Programmes d'études
C. SPÉC.: Network models, systems and games

Programmes d'études
C. SPÉC.: Network models, systems and games
Programmes d'études
Détails et horaire du cours
Légende
Cours de jour
Cours de soir
Cours en ligne
Certificats et microprogrammes de 1er cycle
Baccalauréat (formation d'ingénieur)
Études supérieures
ELE6953KE
C. SPÉC.: Network models, systems and games
Nombre de crédits :
3 (3 - 0 - 6)
Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département :
Génie électrique
Préalable(s) :
70 credits passed for undergraduate students
Corequis :
Notes :
Responsable(s) :
Shuang Gao
Description
Network systems ranging from social, technology to biology networks are ubiquitous. Examples of such networks include financial networks, social networks, robotics networks, biological networks, smart grids, communication networks and epidemic spread networks, etc. Network modelling and analysis of these systems are important in understanding behaviours these systems. This course aims to provide an introduction to various network models for modelling, analyzing and predicting properties of such networks, with the objective to equip students with the theoretical and numerical tools to study network systems. Students will be exposed to both theoretical and numerical tools in analyzing network systems. In addition, students will be trained in the reading and the implementation of results in seminal research papers. Topics in the course include: introduction to network systems, matrix theory and algebraic graph theory, centrality measures and applications, clustering for networks, consensus dynamics (including convergence analysis and applications), continous time positive systems, compartmental models, network synchronization and Kuramoto oscillators, epidemic spread over networks, network games and learning, as well as two special topics (one on graph neural networks, and the other on mean field games). This course is suitable for students who want to have some exposure of research topics related to network systems and games.
Network systems ranging from social, technology to biology networks are ubiquitous. Examples of such networks include financial networks, social networks, robotics networks, biological networks, smart grids, communication networks and epidemic spread networks, etc. Network modelling and analysis of these systems are important in understanding behaviours these systems. This course aims to provide an introduction to various network models for modelling, analyzing and predicting properties of such networks, with the objective to equip students with the theoretical and numerical tools to study network systems. Students will be exposed to both theoretical and numerical tools in analyzing network systems. In addition, students will be trained in the reading and the implementation of results in seminal research papers. Topics in the course include: introduction to network systems, matrix theory and algebraic graph theory, centrality measures and applications, clustering for networks, consensus dynamics (including convergence analysis and applications), continous time positive systems, compartmental models, network synchronization and Kuramoto oscillators, epidemic spread over networks, network games and learning, as well as two special topics (one on graph neural networks, and the other on mean field games). This course is suitable for students who want to have some exposure of research topics related to network systems and games.
Horaire
Cours | ||||
---|---|---|---|---|
Groupe | Jour | Heure | Local | Enseignant(e)(s) |
01 | Lundi | 9h30, 10h30, 11h30 | C-632 | Gao, Shuang |
Plan triennal
2025-2026 | 2026-2027 | 2027-2028 | ||||||
---|---|---|---|---|---|---|---|---|
Automne | Hiver | Été | Automne | Hiver | Été | Automne | Hiver | Été |
Cours de jour | - | - | - | - | - | - | - | - |