Programmes d'études
Analyse et commande systèmes non linéaires

Programmes d'études
Analyse et commande systèmes non linéaires
Programmes d'études
Détails et horaire du cours
Légende
Cours de jour
Cours de soir
Cours en ligne
Certificats et microprogrammes de 1er cycle
Baccalauréat (formation d'ingénieur)
Études supérieures
ELE6204A
Analyse et commande systèmes non linéaires
Nombre de crédits :
3 (3 - 0 - 6)
Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département :
Génie électrique
Préalable(s) :
ELE3201
Corequis :
Notes :
Responsable(s) :
Guchuan Zhu
Description
Nature, structure et propriétés de systèmes non linéaires. Éléments des systèmes dynamiques : analyse qualitative ; équivalence topologique ; hyperbolicité et variété centre ; cycle limite ; bifurcations. Perturbations régulières et singulières. Théorie de Lyapunov et principe d'invariance de LaSalle. Stabilité des systèmes stationnaires et instationnaires. Approche de la géométrie différentielle : commandabilité ; observabilité ; linéarisabilité ; découplage. Passivité et stabilité au sens entrée-sortie. Conception des systèmes de commande non linéaires : linéarisation par bouclage d'état ; formes canoniques et dynamique des zéros ; observateur et retour de sortie ; platitude. Commande par la méthode de Lyapunov : fonction de Lyapunov assignable ; méthode « integrator backstepping ». Commande robuste et adaptive : commande par mode de glissement ; robustification par amortissement non linéaire ; stabilité entrée-état et ses variations ; théorème du petit gain.
Nature, structure et propriétés de systèmes non linéaires. Éléments des systèmes dynamiques : analyse qualitative ; équivalence topologique ; hyperbolicité et variété centre ; cycle limite ; bifurcations. Perturbations régulières et singulières. Théorie de Lyapunov et principe d'invariance de LaSalle. Stabilité des systèmes stationnaires et instationnaires. Approche de la géométrie différentielle : commandabilité ; observabilité ; linéarisabilité ; découplage. Passivité et stabilité au sens entrée-sortie. Conception des systèmes de commande non linéaires : linéarisation par bouclage d'état ; formes canoniques et dynamique des zéros ; observateur et retour de sortie ; platitude. Commande par la méthode de Lyapunov : fonction de Lyapunov assignable ; méthode « integrator backstepping ». Commande robuste et adaptive : commande par mode de glissement ; robustification par amortissement non linéaire ; stabilité entrée-état et ses variations ; théorème du petit gain.
Plan triennal
2024-2025 | 2025-2026 | 2026-2027 | ||||||
---|---|---|---|---|---|---|---|---|
Automne | Hiver | Été | Automne | Hiver | Été | Automne | Hiver | Été |
Cours de jour | - | - | Cours de jour | - | - | Cours de jour | - | - |