Calendrier

GERAD/CERC Data Science Seminar: Ribana Roscher

GERAD/CERC Data Science Seminar:  Ribana Roscher

GERAD Seminar joint with the Canada Excellence Research Chair in Data Science for Real-Time Decision-Making 

Title: Unsupervised and self-taught learning for remote sensing image interpretation

Speaker: Ribana Roscher – University of Bonn, Germany

Abstract:

This presentation gives an overview about my current research with remote sensing application examples. In my research I am aiming at the development of pattern recognition methods, which are particularly designed for the analysis of large scale remote sensing data. I specifically focus on efficient classification methods, techniques for sophisticated feature learning and the integration of prior knowledge such as spatial and temporal information. A central idea in my research is to develop methods which ensure a high discrimination power and at the same time model the underlying structure of the data, since such methods are a prerequisite for the automatic analysis of earth observation data. More specifically, my main focus is on unsupervised and self-taught learning in order to integrate unlabeled data for the classifcation process. This covers at the moment mostly methods such as sparse representation, archetypal analysis and one-class classifier. My applications cover the analysis and interpretation of multi- and hyperspectral aerial and satellite images (LULC classification), but also the detection of unknown classes and anomaly detection.

---

Free entrance.
Welcome to everyone!

 

Date

Wednesday March 15, 2017
Starts at 10:45

Price

gratuit

Contact

Place

Université de Montréal - Pavillon André-Aisenstadt
2920, chemin de la Tour
Montréal
QC
Canada
H3T 1N8
514 343-6111
4488

Categories