Calendrier

GERAD Seminar: Saddle point systems with a maximally rank deficient leading block

GERAD Seminar: Saddle point systems with a maximally rank deficient leading block

Title: Saddle point systems with a maximally rank deficient leading block

Speaker: Chen Greif, The University of British Columbia, Canada

Abstract:

We consider nonsingular saddle-point matrices whose leading block is maximally rank deficient, and show that the inverse in this case has unique mathematical properties. We then develop a class of indefinite block preconditioners that rely on approximating the null space of the leading block. The preconditioned matrix is a product of two indefinite matrices but under certain conditions the conjugate gradient method can be applied and is rapidly convergent. Spectral properties of the preconditioners are observed and validated by numerical experiments.

This is joint work with Ron Estrin.


Free entrance.
Welcome to everyone!

 

Date

Thursday November 12, 2015
Starts at 11:00

Price

gratuit

Contact

Place

Université de Montréal - Pavillon André-Aisenstadt
2920, chemin de la Tour
Montréal
QC
Canada
H3T 1N8
514 343-6111
4488

Categories