Calendrier

DS4DM Coffee Talks

Large-Scale Dynamic Vehicle Routing Problems with Stochastic Requests

Alexandre Florio Polytechnique Montréal, Canada

Dynamic vehicle routing problems (DVRPs) arise in several applications such as technician routing, meal delivery, and parcel shipping. We consider the DVRP with stochastic customer requests (DVRPSR), in which vehicles must be routed dynamically with the goal of maximizing the number of served requests. We model the DVRPSR as a multi-stage optimization problem, where the first-stage decision defines route plans for serving scheduled requests. Our main contributions are knapsack-based linear models to approximate accurately the expected reward-to-go, measured as the number of accepted requests, at any state of the stochastic system. These approximations are based on representing each vehicle as a knapsack with a capacity given by the remaining service time available along the vehicle's route. We combine these approximations with optimal acceptance and assignment decision rules and derive efficient and high-performing online scheduling policies. We further leverage good predictions of the expected reward-to-go to design initial route plans that facilitate serving dynamic requests. Computational experiments on very large instances based on a real street network demonstrate the effectiveness of the proposed methods in prescribing high-quality offline route plans and online scheduling decisions. This work is available as a preprint at arxiv:2202.12983 and implementations (and visualizations) are available here

Optimal Transport

Kilian Fatras MILA, Université McGill, Canada

Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over minibatches of data. While computationally appealing, we highlight in this talk some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behaviours. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.

Date

Thursday April 7, 2022
From 11:00 to 13:00

Price

gratuit

Contact

Place

Séminaire hybride sur zoom et dans la salle de séminaire du
GERAD
Pavillon André-Aisenstadt (Université de Montréal)
4e étage
Salle 4488

Categories