Programmes d'études
Special Num Methods for Transport Phenomena

Programmes d'études
Special Num Methods for Transport Phenomena
Programmes d'études
Détails et horaire du cours
Légende
Cours de jour
Cours de soir
Cours en ligne
Certificats et microprogrammes de 1er cycle
Baccalauréat (formation d'ingénieur)
Études supérieures
GCH8108E
Special Num Methods for Transport Phenomena
Nombre de crédits :
3 (3 - 1 - 5)
Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département :
Génie chimique
Préalable(s) :
GCH2545 et 70 crédits pour les étudiants au baccalauréat
Corequis :
Notes :
Responsable(s) :
Bruno Blais
Description
Review of the key notions in transport phenomena. Classification of numerical methods for the solution of heat, mass and momentum transfer. Review of modeling and classical numerical methods (finite difference/volume/element). Lattice Boltzmann method (LBM). Smoothed particle hydrodynamics (SPH). Discrete element method (DEM) for the simulation of granular flows. Development, principles and implementation of specialized methods, algorithmic considerations and applications. Advantages and disadvantages of the various methods. CFD-DEM coupling for solid-fluid applications. Introduction to high performance scientific computing. Principles of verification and validation. Project applied to heat, mass and momentum transfer problems.
Review of the key notions in transport phenomena. Classification of numerical methods for the solution of heat, mass and momentum transfer. Review of modeling and classical numerical methods (finite difference/volume/element). Lattice Boltzmann method (LBM). Smoothed particle hydrodynamics (SPH). Discrete element method (DEM) for the simulation of granular flows. Development, principles and implementation of specialized methods, algorithmic considerations and applications. Advantages and disadvantages of the various methods. CFD-DEM coupling for solid-fluid applications. Introduction to high performance scientific computing. Principles of verification and validation. Project applied to heat, mass and momentum transfer problems.
Plan triennal
2022-2023 | 2023-2024 | 2024-2025 | ||||||
---|---|---|---|---|---|---|---|---|
Automne | Hiver | Été | Automne | Hiver | Été | Automne | Hiver | Été |
- | Cours de jour | - | - | Cours de jour | - | - | Cours de jour | - |