Programmes d'études
I.A.:tech. probabilistes et d'apprentissage

Programmes d'études
I.A.:tech. probabilistes et d'apprentissage
Programmes d'études
Détails et horaire du cours
Légende
Cours de jour
Cours de soir
Cours en ligne
Certificats et microprogrammes de 1er cycle
Baccalauréat (formation d'ingénieur)
Études supérieures
INF8225
I.A.:tech. probabilistes et d'apprentissage
Nombre de crédits :
3 (3 - 1.5 - 4.5)
Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département :
Génies informatique & logiciel
Préalable(s) :
70 crédits pour les étudiants au baccalauréat
Corequis :
Notes :
Responsable(s) :
Christopher J. Pal
Description
Méthodes probabilistes d'intelligence artificielle. Modèles probabilistes : réseaux bayésiens, modèles de Markov cachés, champs aléatoires de Markov et leurs généralisations. Inférence. Théorie de la décision statistique et des réseaux de décision. Algorithmes d'apprentissage automatique, classificateurs simples, complexes et structurés. L'apprentissage profond « deep learning ». Traitement probabiliste de la langue naturelle et de la perception visuelle. Applications à la conception et l'implantation des systèmes experts, au forage de données, à la recherche d'informations et à la vision par ordinateur.
Méthodes probabilistes d'intelligence artificielle. Modèles probabilistes : réseaux bayésiens, modèles de Markov cachés, champs aléatoires de Markov et leurs généralisations. Inférence. Théorie de la décision statistique et des réseaux de décision. Algorithmes d'apprentissage automatique, classificateurs simples, complexes et structurés. L'apprentissage profond « deep learning ». Traitement probabiliste de la langue naturelle et de la perception visuelle. Applications à la conception et l'implantation des systèmes experts, au forage de données, à la recherche d'informations et à la vision par ordinateur.
Horaire
Cours | ||||
---|---|---|---|---|
Groupe | Jour | Heure | Local | Enseignant(e)(s) |
01 | Vendredi | 12h45, 13h45, 14h45 | M-1510 | Pal, Christopher J. |
Travaux pratiques | ||||
---|---|---|---|---|
Groupe | Jour | Heure | Local | Enseignant(e)(s) |
01 | Mercredi | 15h45, 16h45, 17h45 (B1) | L-4712 | Alipourhajiagha, Maryam; Gosselin, Anthony |
02 | Mercredi | 15h45, 16h45, 17h45 (B2) | L-4712 | Labassi, Samy |
03 | Mercredi | 11h30, 12h45, 13h45 (B1) | L-4712 | Salmona, Abel |
Plan triennal
2024-2025 | 2025-2026 | 2026-2027 | ||||||
---|---|---|---|---|---|---|---|---|
Automne | Hiver | Été | Automne | Hiver | Été | Automne | Hiver | Été |
- | Cours de jour | - | - | Cours de jour | - | - | Cours de jour | - |