Monnet, D., & Orban, D. (2025). A multi-precision quadratic regularization method for unconstrained optimization with rounding error analysis. Computational Optimization and Applications, 35 pages.
Répertoire des expertises
Orban, Dominique

Répertoire des expertises
Orban, Dominique
Répertoire des expertises
Publications par date
Article de revue (59)
Communication de conférence (10)
Livre (1)
Chapitre de livre (1)
Brevet
Rapport (61)
Thèse
Ensemble de données (2)
Ressource pédagogique
Image
Enregistrement audio
Enregistrement vidéo
Autre
Dominique Orban (134)
- 2025 (2)
Article de revue Article de revue Montoison, A., Orban, D., & Saunders, M. A. (2025). MinAres: An Iterative Solver for Symmetric Linear Systems. SIAM Journal on Matrix Analysis and Applications, 46(1), 509-529.
- 2024 (14)
Article de revue Aravkin, A. Y., Baraldi, R., & Orban, D. (2024). A Levenberg-Marquardt method for nonsmooth regularized least squarres. SIAM Journal on Scientific Computing, 46(4), A2557-A2581.Rapport Diouane, Y., Gürol, S., Mouhtal, O., & Orban, D. (2024). An efficient scaled spectral preconditioner for sequences of symmetric positive definite linear systems. (Rapport technique n° G-2024-66).Rapport Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2024). An inexact augmented Lagrangian algorithm for unsymmetric saddle-point systems. (Rapport technique n° G-2024-30).Rapport Leconte, G., & Orban, D. (2024). An interior-point trust-region method for nonsmooth regularized bound-constrained optimization. (Rapport technique n° G-2024-17).Rapport Diouane, Y., Golier, M., & Orban, D. (2024). A nonsmooth exact penalty method for equality-constrained optimization : complexity and implementation. (Rapport technique n° G-2024-55).Rapport Diouane, Y., Laghdaf Habiboullah, M., & Orban, D. (2024). A proximal modified quasi-Newton method for nonsmooth regularized optimization. (Rapport technique n° G-2024-64).Rapport Aravkin, A., Baraldi, R., & Orban, D. (2024). A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (Rapport technique n° G-2021-12).Rapport Diouane, Y., Laghdaf Habiboullah, M., & Orban, D. (2024). Complexity of trust-region methods in the presence of unbounded Hessian approximations. (Rapport technique n° G-2024-43).Rapport Aravkin, A., Baraldi, R., Leconte, G., & Orban, D. (2024). Corrigendum: A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (Rapport technique n° G-2021-12-SM).Article de revue Migot, T., Orban, D., & Siqueira, A. S. (2024). JSOSuite.jl: Solving continuous optimization problems with JuliaSmoothOptimizers. JuliaCon Proceedings, 6(63), 161-161.Rapport Migot, T., Orban, D., & Soares Siquiera, A. (2024). JSOSuite.jl: Solving continuous optimization problems with JuliaSmoothOptimizers. (Rapport technique n° G-2024-52).Rapport Fowkes, J., Lister, A., Montoison, A., & Orban, D. (2024). LibHSL : the ultimate collection for large-scale scientific computation. (Rapport technique n° G-2024-06).Rapport Leconte, G., & Orban, D. (2024). RipQP: A multi-precision regularized predictor-corrector method for convex quadratic optimization. (Rapport technique n° G-2021-03).Article de revue Leconte, G., & Orban, D. (2024). The indefinite proximal gradient method. Computational Optimization and Applications, 43 pages.
- 2023 (15)
Rapport Bigeon, J., Orban, D., & Raynaud, P. (2023). A framework around limited-memory partitioned quasi-Newton methods. (Rapport technique n° G-2023-17).Rapport Monnet, D., & Orban, D. (2023). A multi-precision quadratic regularization method for unconstrained optimization with rouding error analysis. (Rapport technique n° G-2023-18).Rapport Leconte, G., & Orban, D. (2023). Complexity of trust-region with unbounded Hessian approximations for smooth and nonsmooth optimization. (Rapport technique n° G-2023-65).Ensemble de données Fowkes, J., Gould, N. I. M., Montoison, A., & Orban, D. (2023). GALAHAD 4 an open source library of Fortran packages with C and Matlab interfaces for continuous optimization' [Ensemble de données].Article de revue Montoison, A., & Orban, D. (2023). GPMR : an iterative method for unsymmetric partitioned lliear systems. SIAM Journal on Matrix Analysis and Applications, 44(1), 293-311.Rapport Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. (Rapport technique n° G-2022-50).Article de revue Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. The Journal of Open Source Software, 8(89), 5187-5187.Communication de conférence Raynaud, P., & Orban, D. (septembre 2023). Limited-memory stochastic partitioned quasi-newton training [Affiche]. Edge Intelligence Workshop, Montreal, Qc, Canada (1 page).Rapport Montoison, A., Orban, D., & Saunders, M. A. (2023). MinAres : an iterative solver for symmetric linear systems. (Rapport technique n° G-2023-40).Article de revue Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). On GSOR, the Generalized Successive Overrelaxation Method for Double Saddle-Point Problems. SIAM Journal on Scientific Computing, 45(5), A2185-A2206.Rapport Raynaud, P., Orban, D., & Bigeon, J. (2023). Partially-separable loss to parallellize partitioned neural network training. (Rapport technique n° G-2023-36).Rapport Raynaud, P., Orban, D., & Bigeon, J. (2023). PLSR1 : a limited-memory partioned quasi-Newton optimizer for partially-separable loss functions. (Rapport technique n° G-2023-41).Article de revue Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems. Optimization Methods & Software, 38(5), 887-913.Article de revue Dussault, J.-P., Migot, T., & Orban, D. (2023). Scalable adaptive cubic regularization methods. Mathematical Programming, 35 pages.Rapport Leconte, G., & Orban, D. (2023). The indefinite proximal gradient method. (Rapport technique n° G-2023-37).
- 2022 (9)
Rapport Aravkin, A., Baraldi, R., & Orban, D. (2022). A Levenberg-Marquardt method for nonsmooth regularized least squares. (Rapport technique n° G-2022-58).Article de revue Aravkin, A. Y., Baraldi, R., & Orban, D. (2022). A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. SIAM Journal on Optimization, 32(2), 900-929.Rapport Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). A semi-conjugate gradient method for solving unsymmetric positive definite linear systems. (Rapport technique n° G-2022-25).Rapport Lakhmiri, D., Orban, D., & Lodi, A. (2022). A stochastic proximal method for nonsmooth regularized finite sum optimization. (Rapport technique n° G-2022-27).Rapport Orban, D. (2022). Computing a sparse projection into a box. (Rapport technique n° G-2022-12).Article de revue Migot, T., Orban, D., & Siqueira, A. S. (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source Software, 7(70), 4 pages.Rapport Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). On GSOR, the generalized successive overrelaxation method for double saddle-point problems. (Rapport technique n° G-2022-35).Article de revue Migot, T., Orban, D., & Soares Siqueira, A. (2022). PDENLP models.jl : an NLP model API for optimization problems with PDE-constraints. Journal of Open Source Software, 5 pages.Rapport Migot, T., Orban, D., & Soares Siquiera, A. (2022). PDENLPModels.jl: An NLPModel API for optimization problems with PDE-constraints. (Rapport technique n° G-2022-42).
- 2021 (8)
Rapport Ma, D., Orban, D., & Saunders, M. A. (2021). A Julia implementation of Algorithm NCL for constrained optimization. (Rapport technique n° 2021-02).Article de revue di Serafino, D., & Orban, D. (2021). Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems. SIAM Journal on Scientific Computing, 43(2), 1001-1026.Rapport Migot, T., Orban, D., & Soares Siquiera, A. (2021). DCISolver.jl: A Julia solver for nonlinear optimization using dynamic control of infeasibility. (Rapport technique n° G-2021-67).Rapport Montoison, A., & Orban, D. (2021). GPMR: An iterative method for unsymmetric partitioned linear systems. (Rapport technique n° G-2021-62).Article de revue Ghannad, A., Orban, D., & Saunders, M. A. (2021). Linear systems arising in interior methods for convex optimization: a symmetric formulation with bounded condition number. Optimization Methods and Software, 37(4), 1344-1369.Rapport Lotfi, S., Orban, D., & Lodi, A. (2021). Stochastic adaptive regularization with dynamic sampling for machine learning. (Rapport technique n° G-2020-51).Rapport Montoison, A., & Orban, D. (2021). TriCG and TriMR: Two iterative methods for symmetric and quasi-definite systems. (Rapport technique n° G-2020-41).Article de revue Montoison, A., & Orban, D. (2021). TRICG and TRIMR: Two iterative methods for symmetric quasi-definite systems. SIAM Journal on Scientific Computing, 43(4), A2502-A2525.
- 2020 (11)
Communication de conférence Ma, D., Orban, D., & Saunders, M. A. (janvier 2020). A Julia Implementation of Algorithm NCL for Constrained Optimization [Communication écrite]. 5th International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOV 2020), Muscat, Oman.Article de revue Orban, D., & Siqueira, A. S. (2020). A regularization method for constrained nonlinear least squares. Computational Optimization and Applications, 76(3), 961-989.Article de revue Dehghani, M., Lambe, A., & Orban, D. (2020). A regularized interior-point method for constrained linear least squares. INFOR: Information Systems and Operational Research, 58(2), 202-224.Rapport Ghannad, A., Orban, D., & Saunders, M. A. (2020). A symmetric formulation of the linear system arising in interior methods for convex optimization with bounded condition number. (Rapport technique n° G-2020-37).Article de revue Montoison, A., & Orban, D. (2020). BILQ: An iterative method for nonsymmetric linear systems with a quasi-minimum error property. SIAM Journal on Matrix Analysis and Applications, 41(3), 1145-1166.Article de revue Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.Article de revue Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for general constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1836-A1859.Rapport Angla, C., Bigeon, J., & Orban, D. (2020). Modeling and solving bundle adjustment problems. (Rapport technique n° G-2020-42).Rapport Article de revue Mestdagh, G., Goussard, Y., & Orban, D. (2020). Scaled projected-directions methods with application to transmission tomography. Optimization and Engineering, 21(4), 1537-1561.Rapport Lotfi, S., Bonniot de Ruisselet, T., Orban, D., & Lodi, A. (2020). Stochastic damped L-BFGS with controlled norm of the Hessian approximation. (Rapport technique n° 2020-52).
- 2019 (12)
Rapport Orban, D., & Siqueira, A. S. (2019). A regularization method for constrained nonlinear least squares. (Rapport technique n° G-2019-17).Article de revue Buttari, A., Orban, D., Ruiz, D., & Titley-Peloquin, D. (2019). A tridiagonalization method for symmetric saddle-point systems. SIAM Journal on Scientific Computing, 41(5), S409-S432.Rapport Montoison, A., & Orban, D. (2019). BiLQ: An iterative method for nonsymmetric linear systems with a quasi-minimum property. (Rapport technique n° G-2019-71).Rapport di Serafino, D., & Orban, D. (2019). Constraint-preconditioned Krylov solvers for regularized saddle-point systems. (Rapport technique).Rapport Bourhis, J., Dussault, J.-P., & Orban, D. (2019). Étude du comportement des méthodes BFGS et L-BFGS pour résoudre un sous-problème de région de confiance. (Rapport technique n° G-2019-64).Article de revue Estrin, R., Orban, D., & Saunders, M. A. (2019). Euclidean-norm error bounds for SYMMLQ and CG. SIAM Journal on Matrix Analysis and Applications, 40(1), 235-253.Rapport Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for constrained nonlinear optimization. (Rapport technique n° G-2019-27).Rapport Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (Rapport technique n° G-2019-04).Article de revue Estrin, R., Orban, D., & Saunders, M. A. (2019). LNLQ: An iterative method for least-norm problems with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(3), 1102-1124.Article de revue Estrin, R., Orban, D., & Saunders, M. A. (2019). LSLQ: An iterative method for linear least-squares with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(1), 254-275.Rapport Mestdagh, G., Goussard, Y., & Orban, D. (2019). Scaled projected-directions methods with application to transmission tomography. (Rapport technique n° G-2019-60).Article de revue Dahito, M.-A., & Orban, D. (2019). The conjugate residual method in linesearch and trust-region methods. SIAM Journal on Optimization, 29(3), 1988-2025.
- 2018 (7)
Article de revue Arreckx, S., & Orban, D. (2018). A regularized factorization-free method for equality-constrained optimization. SIAM Journal on Optimization, 28(2), 1613-1639.Communication de conférence Sinqueira, A. S., & Orban, D. (juillet 2018). A regularized interior-point method for constrained nonlinear least squares [Communication écrite]. 12th Brazilian Workshop on Continuous Optimization, Foz do Iguaçu, Brazil.Rapport Buttari, A., Orban, D., Ruiz, D., & Titley-Peloquin, D. (2018). A tridiagonalization method for symmetric saddle-point and quasi-definitive system. (Rapport technique n° G-2018-42).Communication de conférence Siqueira, A. S., & Orban, D. (juin 2018). Developing new optimization methods with packages from the JuliaSmoothOptimizers organisation [Communication écrite]. 2nd annual JuMP-Dev Workshop, Bordeaux, France (30 pages).Article de revue Orban, D. (2018). Introduction to computation and programming using Python, Second edition, with application to understanding data (review). SIAM Review, 60(2), 483-485.Rapport Estrin, R., Orban, D., & Saunders, M. A. (2018). LNLQ: An iterative method for least-norm problems with an error minimization property. (Rapport technique n° G-2018-40).Rapport Dahito, M.-A., & Orban, D. (2018). The conjugate residual method in linesearch and trust-region methods. (Rapport technique n° G-2018-50).
- 2017 (7)
Article de revue Dehghani, A., Goffin, J. L., & Orban, D. (2017). A primal-dual regularized interior-point method for semidefinite programming. Optimization Methods & Software, 32(1), 193-219.Rapport Crélot, A.-S., Beauthier, C., Orban, D., Sainvitu, C., & Sartenaer, A. (2017). Combining surrogate strategies with MADS for mixed-variable derivative-free optimization. (Rapport technique n° G-2017-70).Rapport Goussard, Y., McLaughlin, M., & Orban, D. (2017). Factorization-free methods for computed tomography. (Rapport technique n° G-2017-65).Livre Orban, D., & Arioli, M. (2017). Iterative solution of symmetric quasi-definite linear systems.Rapport Estrin, R., Orban, D., & Saunders, M. A. (2017). LSLQ: An Iterative Method for Linear Least-Squares with an Error Minimization Property. (Rapport technique n° G-2017-05).Rapport Côté, P., Demeester, K., Orban, D., & Towhidi, M. (2017). Numerical methods for stochastic dynamic programming with application to hydropower optimization. (Rapport technique n° G-2017-64).Communication de conférence Ma, D., Judd, K. L., Orban, D., & Saunders, M. A. (janvier 2017). Stabilized optimization via an NCL algorithm [Communication écrite]. 4th International Conference on Numerical Analysis and Optimization (NAO-IV 2017), Muscat, Oman.
- 2016 (6)
Article de revue Arreckx, S., Lambe, A., Martins, J., & Orban, D. (2016). A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization. Optimization and Engineering, 17(2), 359-384.Rapport Arreckx, S., & Orban, D. (2016). A Regularized Factorization-Free Method for Equality-Constrained Optimization. (Rapport technique n° G-2016-65).Article de revue Towhidi, M., & Orban, D. (2016). Customizing the solution process of COIN-ORs linear solvers with Python. Mathematical Programming Computation, 8(4), 377-391.Rapport Estrin, R., Orban, D., & Saunders, M. A. (2016). Estimates of the 2-Norm Forward Error for SYMMLQ and CG. (Rapport technique n° G-2016-70).Rapport Arreckx, S., Orban, D., & Van Omme, N. (2016). NLP.py: An object-oriented environment for large-scale optimization. (Rapport technique n° G-2016-42).Communication de conférence Beauthier, C., Crélot, A. S., Orban, D., Sainvitu, C., & Sartenaer, A. (janvier 2016). Surrogate Management in Mixed-Variable Derivative-Free Optimization [Communication écrite]. 30th Annual Conference of the Belgian Operational Research Society (ORBEL 30), Louvain-la-Neuve, Belgique.
- 2015 (5)
Rapport Orban, D. (2015). A Collection of Linear Systems Arising from Interior-Point Methods for Quadratic Optimization. (Rapport technique n° G-2015-117).Rapport Dussault, J.-P., & Orban, D. (2015). A Scalable Implementation of Adaptive Cubic Regularization Methods Using Shifted Linear Systems. (Rapport technique n° G-2015-109).Article de revue Gould, N. I. M., Orban, D., & Toint, P. L. (2015). CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization. Computational Optimization and Applications, 60(3), 545-557.Article de revue Orban, D. (2015). Limited-memory LDL⊤ factorization of symmetric quasi-definite matrices with application to constrained optimization. Numerical Algorithms, 70(1), 9-41.Ensemble de données Orban, D. (2015). Sqd-Collection: Initial Release [Ensemble de données].
- 2014 (5)
Communication de conférence Gould, N. I. M., Orban, D., & Toint, P. L. (janvier 2014). An interior-point 1-penalty method for nonlinear optimization [Communication écrite]. 3rd International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOIII-2014), Muscat, Oman.Article de revue Greif, C., Moulding, E., & Orban, D. (2014). Bounds on Eigenvalues of matrices arising from interior-point methods. SIAM Journal on Optimization, 24(1), 49-83.Article de revue Audet, C., Dang, C.-K., & Orban, D. (2014). Optimization of algorithms with OPAL. Mathematical Programming Computation, 6(3), 233-254.Article de revue Gould, N., Orban, D., & Rees, T. (2014). Projected Krylov methods for saddle-point systems. SIAM Journal on Matrix Analysis and Applications, 35(4), 1329-1343.Rapport Orban, D. (2014). The Projected Golub-Kahan Process for Constrained Linear Least-Squares Problems. (Rapport technique n° G-2014-15).
- 2013 (5)
Article de revue Audet, C., Dang, C.-K., & Orban, D. (2013). Efficient use of parallelism in algorithmic parameter optimization applications. Optimization Letters, 7(3), 421-433.Article de revue Armand, P., Benoist, J., & Orban, D. (2013). From Global to Local Convergence of Interior Methods for Nonlinear Optimization. Optimization Methods & Software, 28(5), 1051-1080.Article de revue Harvey, J.-P., Eriksson, G., Orban, D., & Chartrand, P. (2013). Global Minimization of the Gibbs Energy of Multicomponent Systems Involving the Presence of Order/Disorder Phase Transitions. American Journal of Science, 313(3), 199-241.Rapport Arioli, M., & Orban, D. (2013). Iterative Methods for Symmetric Quasi-Definite Linear Systems--Part I: Theory. (Rapport technique n° G-2013-32).Article de revue Gould, N. I. M., Orban, D., & Robinson, D. P. (2013). Trajectory-following methods for large-scale degenerate convex quadratic programming. Mathematical Programming Computation, 5(2), 113-142.
- 2012 (4)
Article de revue Coulibaly, Z., & Orban, D. (2012). An ℓ₁ Elastic Interior-Point Method for Mathematical Programs With Complementarity Constraints. SIAM Journal on Optimization, 22(1), 187-211.Article de revue Friedlander, M. P., & Orban, D. (2012). A Primal-Dual Regularized Interior-Point Method for Convex Quadratic Programs. Mathematical Programming Computation, 4(1), 71-107.Rapport Dehghani, A., Goffin, J.-L., & Orban, D. (2012). Solving Unconstrained Nonlinear Programs Using ACCPM. (Rapport technique n° G-2012-02).Article de revue Armand, P., & Orban, D. (2012). The squared slacks transformation in nonlinear programming. SQU Journal for Science, 17(1), 22-29.
- 2011 (2)
Communication de conférence Ayotte-Sauvé, É., Chugunova, M., Cortes, B., Lina, A., Majumdar, A., Orban, D., Prior, C., & Zalzal, V. (août 2011). On Equidistant Points on a Curve [Communication écrite]. 4e Atelier de résolution de problèmes industriels de Montréal, Montréal, QC, Canada.Rapport Orban, D. (2011). Templating and Automatic Code Generation for Performance with Python. (Rapport technique n° G-2011-30).
- 2010 (5)
Chapitre de livre Audet, C., Dang, C.-K., & Orban, D. (2010). Algorithmic parameter optimization of the DFO method with the OPAL framework. Dans Naono, K., Teranishi, K., Cavazos, J., & Suda, R. (édit.), Software Automatic Tuning: From Concepts to State-of-the-Art Results (p. 255-274).Article de revue Raymond, V., Soumis, F., & Orban, D. (2010). A new version of the improved primal simplex for degenerate linear programs. Computers & Operations Research, 37(1), 91-98.Article de revue Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., & Schichl, H. (2010). Convexity and Concavity Detection in Computational Graphs: Tree Walks for Convexity Assessment. INFORMS Journal on Computing, 22(1), 26-43.Communication de conférence Harvey, J.-P., Chartrand, P., Eriksson, G., & Orban, D. (septembre 2010). Gibbs energy minimization challenges using implicit variables solution models [Communication écrite]. Discussion meeting on thermodynamics of alloys (TOFA 2010), Porto, Portugal.Article de revue Fourer, R., & Orban, D. (2010). The DrAMPL Meta Solver for Optimization Problem Analysis. Computational Management Science, 7(4), 437-463.
- 2009 (2)
Article de revue Armand, P., Kiselev, A., Marcotte, O., & Orban, D. (2009). Self calibration of a pinhole camera. Mathematics-in-Industry Case Studies, 1, 81-98.Rapport Orban, D. (2009). The Lightning AMPL Tutorial. A Guide for Nonlinear Optimization Users. (Rapport technique n° G-2009-66).
- 2008 (3)
Article de revue Armand, P., Benoist, J., & Orban, D. (2008). Dynamic Updates of the Barrier Parameter in Primal-Dual Methods for Nonlinear Programming. Computational Optimization and Applications, 41(1), 1-25.Rapport Gould, N. I. M., Orban, D., & Toint, P. L. (2008). LANCELOT_SIMPLE: A Simple Interface for LANCELOT-B. (Rapport technique n° G-2008-11).Rapport Orban, D. (2008). Projected Krylov Methods for Unsymmetric Augmented Systems. (Rapport technique n° G-2008-46).
- 2006 (2)
Article de revue Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), 391-408.Article de revue Audet, C., & Orban, D. (2006). Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization. SIAM Journal on Optimization, 17(3), 642-664.
- 2005 (3)
Article de revue Gould, N., Orban, D., & Toint, P. (2005). Numerical methods for large-scale nonlinear optimization. Acta Numerica, 14, 299-361.Communication de conférence Menvielle, N., Goussard, Y., Orban, D., & Soulez, G. (août 2005). Reduction of beam-hardening artifacts in X-ray CT [Communication écrite]. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Article de revue Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2005). Sensitivity of trust-region algorithms to their parameters. 4OR, 3(3), 227-241.
- 2003 (2)
Article de revue Gould, N. I. M., Orban, D., & Toint, P. L. (2003). CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, Revisited. ACM Transactions on Mathematical Software, 29(4), 373-394.Article de revue Gould, N. I. M., Orban, D., & Toint, P. L. (2003). GALAHAD, a Library of Thread-safe Fortran 90 Packages for Large-scale Nonlinear Optimization. ACM Transactions on Mathematical Software, 29(4), 353-372.
- 2002 (3)
Article de revue Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2002). Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Mathematical Programming, 92(3), 481-508.Article de revue Wright, S. J., & Orban, D. (2002). Properties of the Log-Barrier Function on Degenerate Nonlinear Programs. Mathematics of Operations Research, 27(3), 585-613.Rapport Gould, N. I. M., Orban, D., & Toint, P. L. (2002). Results from a Numerical Evaluation of LANCELOT B. (Rapport technique n° NAGIR-2002-1).
- 2001 (1)
Article de revue Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2001). Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming. SIAM Journal on Optimization, 11(4), 974-1002.
- 2000 (1)
Article de revue Conn, A. R., Gould, N. I. M., Orban, D., & Toint, P. L. (2000). A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87(2), 215-249.