Directory of Experts

You are here

Back to search results
Maksim Skorobogatiy
B.Sc. (Rochester), M.Sc. (McGill), M.Sc. EECS (MIT), Ph.D. (MIT)

Research interests and affiliations

Research interests

Theory, manufacturing and application of photonic crystals Our primary objective is to speed up the maturation of microstructured fiber and photonic crystal fiber technologies and their penetration into the industrial sector. Research at the Engineering Physics Department is broadened by our comprehensive research program in Photonic Band Gap materials, nanostructured materials and devices with applications in telecommunications, mid-infrared and terahertz optics, sensing, medicine and intelligent textiles. Experimentally we focus on preform fabrication and fiber drawing of polymer and soft-glass microstructured fibers for biomedical, sensing, intelligent textile, mid-infrared and terahertz applications. We also pursue fabrication of planar and two dimensional photonic crystal waveguides and nanophotonic devices (plasmonics) for sensing applications. Theoretically our group pursues an effort in design of novel highly integrated photonic crystal components based on fibers and planar waveguides, as well as modeling the microstructured fiber fabrication process including fluid dynamics of fiber drawing, heat transfer in high power fiber links, and influence of imperfections on fiber and planar device performance.

Expertise type(s) (NSERC subjects)
  • 1702 Advanced manufacturing
  • 2004 Polymers and coatings
  • 2203 Modelling, simulation
  • 2505 Photonic devices and networks
  • 3110 Optics (see also photon devices 2505)
  • 3112 Photonics

Publications

Recent publications
Journal article
Lavrukhin, D.V., Yachmenev, A.E., Glinskiy, I.A., Khabibullin, R.A., Goncharov, Y.G., Ryzhii, M., Otsuji, T., Spector, I.E., Shur, M., Skorobogatiy, M., Zaytsev, K.I. & Ponomarev, D.S. (2019). Terahertz photoconductive emitter with dielectric-embedded high-aspect-ratio plasmonic grating for operation with low-power optical pumps. AIP Advances, 9(1). Retrieved from https://doi.org/10.1063/1.5081119
Journal article
Qu, H., Lu, X. & Skorobogatiy, M. (2018). All-solid flexible fiber-shaped lithium ion batteries. Journal of the Electrochemical Society, 165(3), A688-A695. Retrieved from https://doi.org/10.1149/2.1001803jes
Conference paper
Guerboukha, H., Nallappan, K. & Skorobogatiy, M. (2018). Exploiting k-space/frequency duality in Fourier optics toward real-time compression-less terahertz imaging. Paper presented at the Computational Imaging III, Orlando, FL (7 pages). Retrieved from https://doi.org/10.1117/12.2304892
Journal article
Guerboukha, H., Nallappan, K. & Skorobogatiy, M. (2018). Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica, 5(2), 109-116. Retrieved from https://doi.org/10.1364/OPTICA.5.000109

Teaching

  • PHS6953A: C. Spéc.: Introduction to photonic crystals
  • PHS6953B: C. Spéc.: Numerical methods in engineering physics
  • PHS3902: Simulation projects in engineering physic
  • PHS2106: Physics of waves

Supervision at Polytechnique

COMPLETED

  • Ph.D. Thesis (8)

    • Li, J. (2017). Hollow core photonic Bragg fibers for industrial sensing applications (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/2472/
    • Ma, T. (2017). Practical terahertz waveguides for advanced light management (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/2475/
    • Markov, A. (2015). Practical Microstructured and Plasmonic Terahertz Waveguides (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1756/
    • Qu, H. (2013). All Photonic Bandgap Bragg Fiber Refractometers (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1301
    • Mazhorova, A. (2012). Fabrication and Characterization of Fiber Optical Components for Application in Guiding, Sensing and Molding of THz and Mid-IR Radiation (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/939
    • Ung, B. (2012). Emerging Microstructured Fibers for Linear and Nonlinear Optical Applications in the Mid-Infrared and Terahertz Spectrum (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/893
    • Dupuis, A. (2010). Dielectric THz Waveguides (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/447
    • Hassani, A. (2009). Plasmonic and nanophotonics sensors from visible to terahertz (Ph.D. Thesis, École Polytechnique de Montréal).
  • Master's Thesis (5)

    • Guerboukha, H. (2015). Advanced instrumentation for practical applications of terahertz spectroscopy and imaging (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1759/
    • Girard, M. (2014). Coupleurs fibres-métasurfaces aux fréquences THz (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1426
    • Gorgutsa, S. (2012). Smart Textiles for Tactile Sensing and Energy Storage (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/926
    • Gauvreau, B. (2008). Dispositifs à bande photonique interdite pour des applications de textiles photoniques et capteurs plasmoniques (Master's Thesis, École Polytechnique de Montréal).
    • Guo, N. (2007). Fabrication of polymer microstructured fibers for applications in guiding of optical power, microfluidics and sensing (Master's Thesis, École Polytechnique de Montréal).

Press review about Maksim Skorobogatiy

November 1, 2017, Ameq en ligne , Le professeur Maksim Skorobogatiy nommé Fellow de l'Optical Society Maksim Skorobogatiy, professeur titulaire au Département de génie physique de Polytechnique Montréal, a été nommé Fellow parmi la promotion 2018 de l'Optical Society pour sa contribution à l'avancement des domaines de l'optique et de la photonique.