Marc Laforest
B.Sc. UQAM, M.Sc., Ph.D. SUNY at Stony Brook
Associate Professor
Department of Mathematical and Industrial Engineering
Department of Mathematical and Industrial Engineering
Research interests and affiliations
Research interests
Continuum mechanics, hyperbolic conservation laws, kinetic equations, numerical analysis, multi-scale analysis, a posteriori error estimation, mesh adaptivity.
Expertise type(s) (NSERC subjects)
- 2203 Modelling, simulation
- 2951 Continuum mechanics
- 2952 Linear and non-linear systems
- 2953 Wave propagation
- 2955 Numerical analysis
Publications
Recent publications
Journal article
Journal article
Journal article
Journal article
Paquette-Rufiange, A., Prudhomme, S., & Laforest, M. (2023). Optimal design of validation experiments for the prediction of quantities of interest. Computer Methods in Applied Mechanics and Engineering, 414, 27 pages.
Kheradmand, E., Laforest, M., & Prudhomme, S. (2022). A mathematical framework for the analysis and comparison of contact detection methods for ellipses and ellipsoids. Computational Particle Mechanics, 9(6), 1153-1203.
De Sousa Alves, B., Laforest, M., & Sirois, F. (2022). 3-D Finite-Element Thin-Shell Model for High-Temperature Superconducting Tapes. IEEE Transactions on Applied Superconductivity, 32(3), 1-11.
Aldirany, Z., Cottereau, R., Laforest, M., & Prudhomme, S. (2022). Optimal error analysis of the spectral element method for the 2D homogeneous wave equation. Computers & Mathematics With Applications, 119, 241-256.
See all publications (26)
Teaching
Équations différentielles. Analyse. Analyse numérique.
Supervision at Polytechnique
COMPLETED
-
Ph.D. Thesis (3)
- De Sousa Alves, B. (2021). 3-D Time-Domain Finite Element Modeling of Nonlinear Conductive and Ferromagnetic Thin Films [Ph.D. thesis, Polytechnique Montréal].
- Kheradmand Nezhad, E. (2020). Contact Detection for Pairs of Ellipses and Ellipsoids: Analysis, Comparisons, and Improvements [Ph.D. thesis, Polytechnique Montréal].
- Wan, A. T. S. (2014). Adaptive Space-Time Finite Element Method in High Temperature Superconductivity [Ph.D. thesis, École Polytechnique de Montréal].
- De Sousa Alves, B. (2021). 3-D Time-Domain Finite Element Modeling of Nonlinear Conductive and Ferromagnetic Thin Films [Ph.D. thesis, Polytechnique Montréal].
-
Master's Thesis (8)
- Thiémonge, R. (2022). Étude des conditions frontières pour la méthode des éléments discrets dans les milieux granulaires [Master's thesis, Polytechnique Montréal].
- Laberge, G. (2020). Statistical Analysis of Spherical Harmonics Representations of Soil Particles [Master's thesis, Polytechnique Montréal].
- Schmidt, A. (2018). On Delamination Crack Detection in Carbon Fiber Reinforced Polymers Using Electrical Impedance Tomography and Supervised Learning [Master's thesis, École Polytechnique de Montréal].
- Paquette-Rufiange, A. (2017). Optimisation adaptative de la topologie de lattices produits par fabrication additive [Master's thesis, École Polytechnique de Montréal].
- Pellerin, J. (2011). Potentiel d'interaction décroissant pour les lois de conservation non convexes [Master's thesis, École Polytechnique de Montréal].
- Assi, K. C. (2008). Version adaptative d'un modèle à vélocité discrète pour l'équation de Boltzmann [Master's thesis, École Polytechnique de Montréal].
- Coutant, F. (2007). Analyse, correction et évaluation de simulations éducatives pour l'enseignement des sciences [Master's thesis, École Polytechnique de Montréal].
- Liu, C. Y. (2007). Adjoint-based error estimation for the front-tracking method [Master's thesis, École Polytechnique de Montréal].
Press review about Marc Laforest

May 3, 2015,
CHOI 98,1 Radio X Québec,
Le show du matin week-end.
L'enseignement des maths n'est plus adapté au monde actuel, dit le mathématicien anglais Conrad Wolfram. Propos de Marc Laforêt, professeur de mathématiques à Polytechnique Montréal.