Luc Adjengue
B.Sc. (Yaoundé), M.Sc., Ph.D. (Montréal).
Associate Professor
Department of Mathematical and Industrial Engineering
Department of Mathematical and Industrial Engineering
Areas of expertise
Time series analysis Applied statistics Parametric inference Multivariate analysis
Time series analysis Applied statistics Parametric inference Multivariate analysis
Research interests and affiliations
Research interests
-
Statistical parametric inference
-
Time series; Spatial processes
-
Applied statisics; Multidimensional analysis
-
Statistical pattern recognition
-
Statistical Learning
Affiliation(s)
Expertise type(s) (NSERC subjects)
- 3002 Time series analysis
- 3004 Applied statistics
- 3009 Parametric inference
- 3011 Multivariate analysis
Publications
Recent publications
Journal article
Conference paper
Conference paper
Journal article
Mirshahi, M., Nia, V.P. & Adjengue, L. (2018). Automatic odor prediction for electronic nose. Journal of Applied Statistics, 45(15), 2788-2799. Retrieved from https://doi.org/10.1080/02664763.2018.1441382
Mirshahi, M., Partovi Nia, V. & Adjengue, L. (2017). An online data validation algorithm for electronic nose. Paper presented at the 5th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2016), Rome, Italy (pp. 104-120). Retrieved from https://doi.org/10.1007/978-3-319-53375-9_6
Mirshahi, M., Nia, V.P. & Adjengue, L. (2016). Statistical measurement validation with application to electronic nose technology. Paper presented at the 5th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2016), Rome, Italy (pp. 407-414). Retrieved from https://doi.org/10.5220/0005628204070414
Adjengue, L., Audet, C. & Ben Yahia, I. (2014). A variance-based method to rank input variables of the Mesh Adaptive Direct Search algorithm. Optimization Letters, 8(5), 1599-1610. Retrieved from https://doi.org/10.1007/s11590-013-0688-4
See all publications (10)
Teaching
- MTH2302B Pobablity and Statistics
- MTH2312 Advanced Statistical Methods
- MTH6305A Statistical Pattern Recognition
- MTH6306 Statistical Analysis of Times Series
- MTH6312 Statistical Learning Methods
Supervision at Polytechnique
COMPLETED
-
Master's Thesis (10)
- Devaux, V. (2022). Modèles prédictifs de l'état final des devis de vente dans une grande entreprise de télécommunications (Master's Thesis, Polytechnique Montréal). Retrieved from https://publications.polymtl.ca/10268/
- Paredes Seminario, J.A. (2020). Multi-criteria Analysis of Internal Cross-docking Operations (Master's Thesis, Polytechnique Montréal). Retrieved from https://publications.polymtl.ca/5405/
- Sanni, F. (2017). Modèle de prévision des taux de clics des annonces textuelles sur les moteurs de recherche (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/2725/
- Vahidpour, M. (2016). Cure rate models (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/2454/
- Assari, C. (2014). Classification de mots-clés des campagnes publicitaires sur les moteurs de recherche et calcul de prévisions (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1509
- Ben Yahia, I. (2012). Identification statistique de variables importantes pour l'optimisation de boîtes noires (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/938
- Abbas Mahamat, A. (2011). Analyse de sensibilité dans un contexte de prévision du prix des métaux (Master's Thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/599/
- Orth, P. (2007). Simulation et analyse paramétrique de méthodes de prise de décision dans le cadre de la maintenance conditionnelle (Master's Thesis, École Polytechnique de Montréal).
- Assadi, R. (2003). Modification d'un algorithme d'apprentissage pour réseaux de neurones appliqués à la couverture de surface (Master's Thesis, École Polytechnique de Montréal).
- Khattar, K. (2003). Analyse mathématique du problème de la frontière bilinéaire appliqué aux réseaux de neurones (Master's Thesis, École Polytechnique de Montréal).