Calendrier

Séminaire du GERAD / CERC Data Science : Ribana Roscher

Séminaire du GERAD / CERC Data Science :  Ribana Roscher

Séminaire du GERAD conjoint avec la Chaire d’excellence en recherche du Canada sur la science des données pour la prise de décision en temps réel 

Titre : Unsupervised and self-taught learning for remote sensing image interpretation

Conférencière : Ribana Roscher – University of Bonn, Allemagne

Résumé :

This presentation gives an overview about my current research with remote sensing application examples. In my research I am aiming at the development of pattern recognition methods, which are particularly designed for the analysis of large scale remote sensing data. I specifically focus on efficient classification methods, techniques for sophisticated feature learning and the integration of prior knowledge such as spatial and temporal information. A central idea in my research is to develop methods which ensure a high discrimination power and at the same time model the underlying structure of the data, since such methods are a prerequisite for the automatic analysis of earth observation data. More specifically, my main focus is on unsupervised and self-taught learning in order to integrate unlabeled data for the classifcation process. This covers at the moment mostly methods such as sparse representation, archetypal analysis and one-class classifier. My applications cover the analysis and interpretation of multi- and hyperspectral aerial and satellite images (LULC classification), but also the detection of unknown classes and anomaly detection.

---

Entrée gratuite.
Bienvenue à tous!

 

Date

Mercredi 15 mars 2017
Débute à 10h45

Prix

gratuit

Contact

Lieu

Université de Montréal - Pavillon André-Aisenstadt
2920, chemin de la Tour
Montréal
QC
Canada
H3T 1N8
514 343-6111
4488

Catégories