Monnet, D., & Orban, D. (2025). A multi-precision quadratic regularization method for unconstrained optimization with rounding error analysis. Computational Optimization and Applications, 35 pages.
Directory of Experts
Orban, Dominique

Directory of Experts
Orban, Dominique
Directory of Experts
Publications by type
Journal article (59)
Conference paper (10)
Book (1)
Book chapter (1)
Patent
Report (87)
Thesis
Dataset (2)
Teaching resource
Image
Audio recording
Video recording
Other
Dominique Orban (160)
- Journal articles (59)
- 2025
Journal article Journal article Montoison, A., Orban, D., & Saunders, M. A. (2025). MinAres: An Iterative Solver for Symmetric Linear Systems. SIAM Journal on Matrix Analysis and Applications, 46(1), 509-529.
- 2024
Journal article Aravkin, A. Y., Baraldi, R., & Orban, D. (2024). A Levenberg-Marquardt method for nonsmooth regularized least squarres. SIAM Journal on Scientific Computing, 46(4), A2557-A2581.Journal article Migot, T., Orban, D., & Siqueira, A. S. (2024). JSOSuite.jl: Solving continuous optimization problems with JuliaSmoothOptimizers. JuliaCon Proceedings, 6(63), 161-161.Journal article Leconte, G., & Orban, D. (2024). The indefinite proximal gradient method. Computational Optimization and Applications, 43 pages.
- 2023
Journal article Montoison, A., & Orban, D. (2023). GPMR : an iterative method for unsymmetric partitioned lliear systems. SIAM Journal on Matrix Analysis and Applications, 44(1), 293-311.Journal article Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. The Journal of Open Source Software, 8(89), 5187-5187.Journal article Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). On GSOR, the Generalized Successive Overrelaxation Method for Double Saddle-Point Problems. SIAM Journal on Scientific Computing, 45(5), A2185-A2206.Journal article Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems. Optimization Methods & Software, 38(5), 887-913.Journal article Dussault, J.-P., Migot, T., & Orban, D. (2023). Scalable adaptive cubic regularization methods. Mathematical Programming, 35 pages.
- 2022
Journal article Aravkin, A. Y., Baraldi, R., & Orban, D. (2022). A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. SIAM Journal on Optimization, 32(2), 900-929.Journal article Migot, T., Orban, D., & Siqueira, A. S. (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source Software, 7(70), 4 pages.Journal article Migot, T., Orban, D., & Soares Siqueira, A. (2022). PDENLP models.jl : an NLP model API for optimization problems with PDE-constraints. Journal of Open Source Software, 5 pages.
- 2021
Journal article di Serafino, D., & Orban, D. (2021). Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems. SIAM Journal on Scientific Computing, 43(2), 1001-1026.Journal article Ghannad, A., Orban, D., & Saunders, M. A. (2021). Linear systems arising in interior methods for convex optimization: a symmetric formulation with bounded condition number. Optimization Methods and Software, 37(4), 1344-1369.Journal article Montoison, A., & Orban, D. (2021). TRICG and TRIMR: Two iterative methods for symmetric quasi-definite systems. SIAM Journal on Scientific Computing, 43(4), A2502-A2525.
- 2020
Journal article Orban, D., & Siqueira, A. S. (2020). A regularization method for constrained nonlinear least squares. Computational Optimization and Applications, 76(3), 961-989.Journal article Dehghani, M., Lambe, A., & Orban, D. (2020). A regularized interior-point method for constrained linear least squares. INFOR: Information Systems and Operational Research, 58(2), 202-224.Journal article Montoison, A., & Orban, D. (2020). BILQ: An iterative method for nonsymmetric linear systems with a quasi-minimum error property. SIAM Journal on Matrix Analysis and Applications, 41(3), 1145-1166.Journal article Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.Journal article Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for general constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1836-A1859.Journal article Mestdagh, G., Goussard, Y., & Orban, D. (2020). Scaled projected-directions methods with application to transmission tomography. Optimization and Engineering, 21(4), 1537-1561.
- 2019
Journal article Buttari, A., Orban, D., Ruiz, D., & Titley-Peloquin, D. (2019). A tridiagonalization method for symmetric saddle-point systems. SIAM Journal on Scientific Computing, 41(5), S409-S432.Journal article Estrin, R., Orban, D., & Saunders, M. A. (2019). Euclidean-norm error bounds for SYMMLQ and CG. SIAM Journal on Matrix Analysis and Applications, 40(1), 235-253.Journal article Estrin, R., Orban, D., & Saunders, M. A. (2019). LNLQ: An iterative method for least-norm problems with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(3), 1102-1124.Journal article Estrin, R., Orban, D., & Saunders, M. A. (2019). LSLQ: An iterative method for linear least-squares with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(1), 254-275.Journal article Dahito, M.-A., & Orban, D. (2019). The conjugate residual method in linesearch and trust-region methods. SIAM Journal on Optimization, 29(3), 1988-2025.
- 2018
Journal article Arreckx, S., & Orban, D. (2018). A regularized factorization-free method for equality-constrained optimization. SIAM Journal on Optimization, 28(2), 1613-1639.Journal article Orban, D. (2018). Introduction to computation and programming using Python, Second edition, with application to understanding data (review). SIAM Review, 60(2), 483-485.
- 2017
Journal article Dehghani, A., Goffin, J. L., & Orban, D. (2017). A primal-dual regularized interior-point method for semidefinite programming. Optimization Methods & Software, 32(1), 193-219.
- 2016
Journal article Arreckx, S., Lambe, A., Martins, J. R. R. A., & Orban, D. (2016). A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization. Optimization and Engineering, 17(2), 359-384.Journal article Towhidi, M., & Orban, D. (2016). Customizing the solution process of COIN-OR's linear solvers with Python. Mathematical Programming Computation, 8(4), 377-391.
- 2015
Journal article Gould, N., Orban, D., & Toint, P. (2015). CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization. Computational Optimization and Applications, 60(3), 545-557.Journal article Orban, D. (2015). Limited-memory LDL⊤ factorization of symmetric quasi-definite matrices with application to constrained optimization. Numerical Algorithms, 70(1), 9-41.
- 2014
Journal article Greif, C., Moulding, E., & Orban, D. (2014). Bounds on Eigenvalues of matrices arising from interior-point methods. SIAM Journal on Optimization, 24(1), 49-83.Journal article Audet, C., Dang, K.-C., & Orban, D. (2014). Optimization of algorithms with OPAL. Mathematical Programming Computation, 6(3), 233-254.Journal article Gould, N., Orban, D., & Rees, T. (2014). Projected Krylov methods for saddle-point systems. SIAM Journal on Matrix Analysis and Applications, 35(4), 1329-1343.
- 2013
Journal article Audet, C., Dang, C. K., & Orban, D. (2013). Efficient use of parallelism in algorithmic parameter optimization applications. Optimization Letters, 7(3), 421-433.Journal article Armand, P., Benoist, J., & Orban, D. (2013). From Global to Local Convergence of Interior Methods for Nonlinear Optimization. Optimization Methods & Software, 28(5), 1051-1080.Journal article Harvey, J.-P., Eriksson, G., Orban, D., & Chartrand, P. (2013). Global Minimization of the Gibbs Energy of Multicomponent Systems Involving the Presence of Order/Disorder Phase Transitions. American Journal of Science, 313(3), 199-241.Journal article Gould, N. I. M., Orban, D., & Robinson, D. P. (2013). Trajectory-following methods for large-scale degenerate convex quadratic programming. Mathematical Programming Computation, 5(2), 113-142.
- 2012
Journal article Coulibaly, Z., & Orban, D. (2012). An ℓ₁ Elastic Interior-Point Method for Mathematical Programs With Complementarity Constraints. SIAM Journal on Optimization, 22(1), 187-211.Journal article Friedlander, M. P., & Orban, D. (2012). A Primal-Dual Regularized Interior-Point Method for Convex Quadratic Programs. Mathematical Programming Computation, 4(1), 71-107.Journal article Armand, P., & Orban, D. (2012). The squared slacks transformation in nonlinear programming. SQU Journal for Science, 17(1), 22-29.
- 2010
Journal article Raymond, V., Soumis, F., & Orban, D. (2010). A new version of the improved primal simplex for degenerate linear programs. Computers & Operations Research, 37(1), 91-98.Journal article Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., & Schichl, H. (2010). Convexity and Concavity Detection in Computational Graphs: Tree Walks for Convexity Assessment. INFORMS Journal on Computing, 22(1), 26-43.Journal article Fourer, R., & Orban, D. (2010). The DrAMPL Meta Solver for Optimization Problem Analysis. Computational Management Science, 7(4), 437-463.
- 2009
Journal article Armand, P., Kiselev, A., Marcotte, O., & Orban, D. (2009). Self calibration of a pinhole camera. Mathematics-in-Industry Case Studies, 1, 81-98.
- 2008
Journal article Armand, P., Benoist, J., & Orban, D. (2008). Dynamic Updates of the Barrier Parameter in Primal-Dual Methods for Nonlinear Programming. Computational Optimization and Applications, 41(1), 1-25.
- 2006
Journal article Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), 391-408.Journal article Audet, C., & Orban, D. (2006). Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization. SIAM Journal on Optimization, 17(3), 642-664.
- 2005
Journal article Gould, N. I. M., Orban, D., & Toint, P. L. (2005). Numerical methods for large-scale nonlinear optimization. Acta Numerica, 14, 299-361.Journal article Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2005). Sensitivity of trust-region algorithms to their parameters. 4OR, 3(3), 227-241.
- 2003
Journal article Gould, N. I. M., Orban, D., & Toint, P. L. (2003). CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, Revisited. ACM Transactions on Mathematical Software, 29(4), 373-394.Journal article Gould, N. I. M., Orban, D., & Toint, P. L. (2003). GALAHAD, a Library of Thread-safe Fortran 90 Packages for Large-scale Nonlinear Optimization. ACM Transactions on Mathematical Software, 29(4), 353-372.
- 2002
Journal article Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2002). Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Mathematical Programming, 92(3), 481-508.Journal article Wright, S. J., & Orban, D. (2002). Properties of the Log-Barrier Function on Degenerate Nonlinear Programs. Mathematics of Operations Research, 27(3), 585-613.
- 2001
Journal article Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2001). Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming. SIAM Journal on Optimization, 11(4), 974-1002.
- 2000
Journal article Conn, A. R., Gould, N. I. M., Orban, D., & Toint, P. L. (2000). A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87(2), 215-249.
- 2025
- Conference papers (10)
- 2023
Conference paper Raynaud, P., & Orban, D. (2023, September). Limited-memory stochastic partitioned quasi-newton training [Poster]. Edge Intelligence Workshop, Montreal, Qc, Canada (1 page).
- 2020
Conference paper Ma, D., Orban, D., & Saunders, M. A. (2020, January). A Julia Implementation of Algorithm NCL for Constrained Optimization [Paper]. 5th International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOV 2020), Muscat, Oman.
- 2018
Conference paper Sinqueira, A. S., & Orban, D. (2018, July). A regularized interior-point method for constrained nonlinear least squares [Paper]. 12th Brazilian Workshop on Continuous Optimization, Foz do Iguaçu, Brazil.Conference paper Siqueira, A. S., & Orban, D. (2018, June). Developing new optimization methods with packages from the JuliaSmoothOptimizers organisation [Paper]. 2nd annual JuMP-Dev Workshop, Bordeaux, France (30 pages).
- 2017
Conference paper Ma, D., Judd, K. L., Orban, D., & Saunders, M. A. (2017, January). Stabilized optimization via an NCL algorithm [Paper]. 4th International Conference on Numerical Analysis and Optimization (NAO-IV 2017), Muscat, Oman.
- 2016
Conference paper Beauthier, C., Crélot, A. S., Orban, D., Sainvitu, C., & Sartenaer, A. (2016, January). Surrogate Management in Mixed-Variable Derivative-Free Optimization [Paper]. 30th Annual Conference of the Belgian Operational Research Society (ORBEL 30), Louvain-la-Neuve, Belgique.
- 2014
Conference paper Gould, N. I. M., Orban, D., & Toint, P. L. (2014, January). An interior-point 1-penalty method for nonlinear optimization [Paper]. 3rd International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOIII-2014), Muscat, Oman.
- 2011
Conference paper Ayotte-Sauvé, É., Chugunova, M., Cortes, B., Lina, A., Majumdar, A., Orban, D., Prior, C., & Zalzal, V. (2011, August). On Equidistant Points on a Curve [Paper]. 4e Atelier de résolution de problèmes industriels de Montréal, Montréal, QC, Canada.
- 2010
Conference paper Harvey, J.-P., Chartrand, P., Eriksson, G., & Orban, D. (2010, September). Gibbs energy minimization challenges using implicit variables solution models [Paper]. Discussion meeting on thermodynamics of alloys (TOFA 2010), Porto, Portugal.
- 2005
Conference paper Menvielle, N., Goussard, Y., Orban, D., & Soulez, G. (2005, August). Reduction of beam-hardening artifacts in X-ray CT [Paper]. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
- 2023
- Books (1)
- 2017
Book Orban, D., & Arioli, M. (2017). Iterative solution of symmetric quasi-definite linear systems.
- 2017
- Book chapters (1)
- 2010
Book chapter Audet, C., Dang, C.-K., & Orban, D. (2010). Algorithmic parameter optimization of the DFO method with the OPAL framework. In Naono, K., Teranishi, K., Cavazos, J., & Suda, R. (eds.), Software Automatic Tuning: From Concepts to State-of-the-Art Results (pp. 255-274).
- 2010
- Reports (87)
- 2024
Report Diouane, Y., Gürol, S., Mouhtal, O., & Orban, D. (2024). An efficient scaled spectral preconditioner for sequences of symmetric positive definite linear systems. (Technical Report n° G-2024-66).Report Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2024). An inexact augmented Lagrangian algorithm for unsymmetric saddle-point systems. (Technical Report n° G-2024-30).Report Leconte, G., & Orban, D. (2024). An interior-point trust-region method for nonsmooth regularized bound-constrained optimization. (Technical Report n° G-2024-17).Report Diouane, Y., Golier, M., & Orban, D. (2024). A nonsmooth exact penalty method for equality-constrained optimization : complexity and implementation. (Technical Report n° G-2024-55).Report Diouane, Y., Laghdaf Habiboullah, M., & Orban, D. (2024). A proximal modified quasi-Newton method for nonsmooth regularized optimization. (Technical Report n° G-2024-64).Report Aravkin, A., Baraldi, R., & Orban, D. (2024). A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (Technical Report n° G-2021-12).Report Diouane, Y., Laghdaf Habiboullah, M., & Orban, D. (2024). Complexity of trust-region methods in the presence of unbounded Hessian approximations. (Technical Report n° G-2024-43).Report Aravkin, A., Baraldi, R., Leconte, G., & Orban, D. (2024). Corrigendum: A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (Technical Report n° G-2021-12-SM).Report Migot, T., Orban, D., & Soares Siquiera, A. (2024). JSOSuite.jl: Solving continuous optimization problems with JuliaSmoothOptimizers. (Technical Report n° G-2024-52).Report Fowkes, J., Lister, A., Montoison, A., & Orban, D. (2024). LibHSL : the ultimate collection for large-scale scientific computation. (Technical Report n° G-2024-06).Report Leconte, G., & Orban, D. (2024). RipQP: A multi-precision regularized predictor-corrector method for convex quadratic optimization. (Technical Report n° G-2021-03).
- 2023
Report Bigeon, J., Orban, D., & Raynaud, P. (2023). A framework around limited-memory partitioned quasi-Newton methods. (Technical Report n° G-2023-17).Report Monnet, D., & Orban, D. (2023). A multi-precision quadratic regularization method for unconstrained optimization with rouding error analysis. (Technical Report n° G-2023-18).Report Leconte, G., & Orban, D. (2023). Complexity of trust-region with unbounded Hessian approximations for smooth and nonsmooth optimization. (Technical Report n° G-2023-65).Report Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. (Technical Report n° G-2022-50).Report Montoison, A., Orban, D., & Saunders, M. A. (2023). MinAres : an iterative solver for symmetric linear systems. (Technical Report n° G-2023-40).Report Raynaud, P., Orban, D., & Bigeon, J. (2023). Partially-separable loss to parallellize partitioned neural network training. (Technical Report n° G-2023-36).Report Raynaud, P., Orban, D., & Bigeon, J. (2023). PLSR1 : a limited-memory partioned quasi-Newton optimizer for partially-separable loss functions. (Technical Report n° G-2023-41).Report Leconte, G., & Orban, D. (2023). The indefinite proximal gradient method. (Technical Report n° G-2023-37).
- 2022
Report Aravkin, A., Baraldi, R., & Orban, D. (2022). A Levenberg-Marquardt method for nonsmooth regularized least squares. (Technical Report n° G-2022-58).Report Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). A semi-conjugate gradient method for solving unsymmetric positive definite linear systems. (Technical Report n° G-2022-25).Report Lakhmiri, D., Orban, D., & Lodi, A. (2022). A stochastic proximal method for nonsmooth regularized finite sum optimization. (Technical Report n° G-2022-27).Report Orban, D. (2022). Computing a sparse projection into a box. (Technical Report n° G-2022-12).Report Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). On GSOR, the generalized successive overrelaxation method for double saddle-point problems. (Technical Report n° G-2022-35).Report Migot, T., Orban, D., & Soares Siquiera, A. (2022). PDENLPModels.jl: An NLPModel API for optimization problems with PDE-constraints. (Technical Report n° G-2022-42).
- 2021
Report Ma, D., Orban, D., & Saunders, M. A. (2021). A Julia implementation of Algorithm NCL for constrained optimization. (Technical Report n° 2021-02).Report Migot, T., Orban, D., & Soares Siquiera, A. (2021). DCISolver.jl: A Julia solver for nonlinear optimization using dynamic control of infeasibility. (Technical Report n° G-2021-67).Report Montoison, A., & Orban, D. (2021). GPMR: An iterative method for unsymmetric partitioned linear systems. (Technical Report n° G-2021-62).Report Lotfi, S., Orban, D., & Lodi, A. (2021). Stochastic adaptive regularization with dynamic sampling for machine learning. (Technical Report n° G-2020-51).Report Montoison, A., & Orban, D. (2021). TriCG and TriMR: Two iterative methods for symmetric and quasi-definite systems. (Technical Report n° G-2020-41).
- 2020
Report Ghannad, A., Orban, D., & Saunders, M. A. (2020). A symmetric formulation of the linear system arising in interior methods for convex optimization with bounded condition number. (Technical Report n° G-2020-37).Report Angla, C., Bigeon, J., & Orban, D. (2020). Modeling and solving bundle adjustment problems. (Technical Report n° G-2020-42).Report Report Lotfi, S., Bonniot de Ruisselet, T., Orban, D., & Lodi, A. (2020). Stochastic damped L-BFGS with controlled norm of the Hessian approximation. (Technical Report n° 2020-52).
- 2019
Report Orban, D., & Siqueira, A. S. (2019). A regularization method for constrained nonlinear least squares. (Technical Report n° G-2019-17).Report Montoison, A., & Orban, D. (2019). BiLQ: An iterative method for nonsymmetric linear systems with a quasi-minimum property. (Technical Report n° G-2019-71).Report di Serafino, D., & Orban, D. (2019). Constraint-preconditioned Krylov solvers for regularized saddle-point systems. (Technical Report).Report Bourhis, J., Dussault, J.-P., & Orban, D. (2019). Étude du comportement des méthodes BFGS et L-BFGS pour résoudre un sous-problème de région de confiance. (Technical Report n° G-2019-64).Report Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for constrained nonlinear optimization. (Technical Report n° G-2019-27).Report Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (Technical Report n° G-2019-04).Report Mestdagh, G., Goussard, Y., & Orban, D. (2019). Scaled projected-directions methods with application to transmission tomography. (Technical Report n° G-2019-60).
- 2018
Report Dehghani, M., Lambe, A., & Orban, D. (2018). A regularized interior-point method for constrained linear least squares. (Technical Report n° G-2018-07).Report Buttari, A., Orban, D., Ruiz, D., & Titley-Peloquin, D. (2018). A tridiagonalization method for symmetric saddle-point and quasi-definitive system. (Technical Report n° G-2018-42).Report Estrin, R., Orban, D., & Saunders, M. A. (2018). LNLQ: An iterative method for least-norm problems with an error minimization property. (Technical Report n° G-2018-40).Report Dahito, M.-A., & Orban, D. (2018). The conjugate residual method in linesearch and trust-region methods. (Technical Report n° G-2018-50).
- 2017
Report Crélot, A.-S., Beauthier, C., Orban, D., Sainvitu, C., & Sartenaer, A. (2017). Combining surrogate strategies with MADS for mixed-variable derivative-free optimization. (Technical Report n° G-2017-70).Report Goussard, Y., McLaughlin, M., & Orban, D. (2017). Factorization-free methods for computed tomography. (Technical Report n° G-2017-65).Report Estrin, R., Orban, D., & Saunders, M. A. (2017). LSLQ: An Iterative Method for Linear Least-Squares with an Error Minimization Property. (Technical Report n° G-2017-05).Report Côté, P., Demeester, K., Orban, D., & Towhidi, M. (2017). Numerical methods for stochastic dynamic programming with application to hydropower optimization. (Technical Report n° G-2017-64).Report Ma, D., Judd, K., Orban, D., & Saunders, M. A. (2017). Stabilized optimization via an NCL algorithm. (Technical Report n° G-2017-108).
- 2016
Report Arreckx, S., & Orban, D. (2016). A Regularized Factorization-Free Method for Equality-Constrained Optimization. (Technical Report n° G-2016-65).Report Estrin, R., Orban, D., & Saunders, M. A. (2016). Estimates of the 2-Norm Forward Error for SYMMLQ and CG. (Technical Report n° G-2016-70).Report Arreckx, S., Orban, D., & Van Omme, N. (2016). NLP.py: An object-oriented environment for large-scale optimization. (Technical Report n° G-2016-42).
- 2015
Report Orban, D. (2015). A Collection of Linear Systems Arising from Interior-Point Methods for Quadratic Optimization. (Technical Report n° G-2015-117).Report Dussault, J.-P., & Orban, D. (2015). A Scalable Implementation of Adaptive Cubic Regularization Methods Using Shifted Linear Systems. (Technical Report n° G-2015-109).
- 2014
Report Arreckx, S., Lambe, A., Martins, J. R. R. A., & Orban, D. (2014). A matrix-free augmented Lagrangian algorithm with application to large-scale structural design optimization. (Technical Report n° G-2014-71).Report Orban, D. (2014). The Projected Golub-Kahan Process for Constrained Linear Least-Squares Problems. (Technical Report n° G-2014-15).
- 2013
Report Gould, N., Orban, D., & Toint, P. (2013). CUTEst: A Constrained and Unconstrained Testing Environment with Safe Threads. (Technical Report n° G-2013-27).Report Arioli, M., & Orban, D. (2013). Iterative Methods for Symmetric Quasi-Definite Linear Systems--Part I: Theory. (Technical Report n° G-2013-32).Report Orban, D. (2013). Limited-Memory LDL⊤ Factorization of Symmetric Quasi-Definite Matrices. (Technical Report n° G-2013-87).Report Gould, N., Orban, D., & Rees, T. (2013). Projected Krylov Methods for Saddle-Point Systems. (Technical Report n° G-2013-23).
- 2012
Report Dehghani, A., Goffin, J.-L., & Orban, D. (2012). A Primal-Dual Regularized Interior-Point Method for Semidefinite Programming. (Technical Report n° G-2012-12).Report Greif, C., Moulding, E., & Orban, D. (2012). Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods. (Technical Report n° G-2012-42).Report Towhidi, M., & Orban, D. (2012). Customizing the Solution Process of COIN-OR's Linear Solvers with Python. (Technical Report n° G-2012-07).Report Audet, C., Dang, K.-C., & Orban, D. (2012). Optimization of Algorithms with OPAL. (Technical Report n° G-2012-08).Report Dehghani, A., Goffin, J.-L., & Orban, D. (2012). Solving Unconstrained Nonlinear Programs Using ACCPM. (Technical Report n° G-2012-02).
- 2011
Report Coulibaly, Z., & Orban, D. (2011). An ℓ₁ Elastic Interior-Point Method for Mathematical Programs with Complementarity Constraints. (Technical Report n° G-2009-74).Report Friedlander, M. P., & Orban, D. (2011). A Primal-Dual Regularized Interior-Point Method for Convex Quadratic Programs. (Technical Report n° G-2010-47).Report Audet, C., Dang, K.-C., & Orban, D. (2011). Efficient Use of Parallelism in Algorithmic Parameter Optimization Applications. (Technical Report n° G-2011-03).Report Armand, P., Benoist, J., & Orban, D. (2011). From Global to Local Convergence of Interior Methods for Nonlinear Optimization. (Technical Report n° G-2008-59).Report Orban, D. (2011). Templating and Automatic Code Generation for Performance with Python. (Technical Report n° G-2011-30).Report Gould, N. I. M., Orban, D., & Robinson, D. P. (2011). Trajectory-Following Methods for Large-Scale Degenerate Convex Quadratic Programming. (Technical Report n° G-2011-50).
- 2010
Report Audet, C., Dang, K.-C., & Orban, D. (2010). Algorithmic Parameter Optimization of the DFO Method with the OPAL Framework. (Technical Report n° G-2010-02).Report Gould, N., Orban, D., & Toint, P. (2010). An Interior-Point l1-Penalty Method for Nonlinear Optimization. (Technical Report n° G-2010-38).
- 2009
Report Orban, D. (2009). The Lightning AMPL Tutorial. A Guide for Nonlinear Optimization Users. (Technical Report n° G-2009-66).
- 2008
Report Raymond, V., Soumis, F., & Orban, D. (2008). A New Version of the Improved Primal Simplex for Degenerate Linear Programs. (Technical Report n° G-2008-66).Report Gould, N. I. M., Orban, D., & Toint, P. L. (2008). LANCELOT_SIMPLE: A Simple Interface for LANCELOT-B. (Technical Report n° G-2008-11).Report Armand, P., Kiselev, A., Marcotte, O., Orban, D., & Zalzal, V. (2008). Nonlinear Continuous Deformation of an Image Based on a Set of Coplanar Straight Lines. (Technical Report n° G-2008-58).Report Orban, D. (2008). Projected Krylov Methods for Unsymmetric Augmented Systems. (Technical Report n° G-2008-46).
- 2007
Report Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., & Schichl, H. (2007). Convexity and Concavity Detection in Computational Graphs. Tree Walks for Convexity Proving. (Technical Report n° G-2007-90).Report Fourer, R., & Orban, D. (2007). DrAmpl - A meta solver for optimization. (Technical Report n° G-2007-10).Report Armand, P., & Orban, D. (2007). The Squared Slacks Transformation in Nonlinear Programming. (Technical Report n° G-2007-62).
- 2005
Report Armand, P., Benoist, J., & Orban, D. (2005). Interpretation of Nonlinear Interior Methods as Damped Newton Methods. (Technical Report n° G-2005-80).
- 2004
Report Audet, C., & Orban, D. (2004). Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm. (Technical Report n° G-2004-96).Report Gould, N. I. M., Orban, D., & Toint, P. L. (2004). Numerical Methods for Large-Scale Nonlinear Optimization. (Technical Report n° G-2004-85).Report Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2004). Sensitivity of Trust-Region Algorithms on their Parameters. (Technical Report n° G-2004-86).
- 2002
Report Gould, N. I. M., Orban, D., & Toint, P. L. (2002). Results from a Numerical Evaluation of LANCELOT B. (Technical Report n° NAGIR-2002-1).
- 2024
- Datasets (2)
- 2023
Dataset Fowkes, J., Gould, N. I. M., Montoison, A., & Orban, D. (2023). GALAHAD 4 an open source library of Fortran packages with C and Matlab interfaces for continuous optimization' [Dataset].
- 2015
Dataset Orban, D. (2015). Sqd-Collection: Initial Release [Dataset].
- 2023