Qin, Q., Li, H., Merlo, E., & Lamothe, M. (2025). Automated, Unsupervised, and Auto-parameterized Inference of Data Patterns and Anomaly Detection [Dataset]. 
Directory of Experts
Lamothe, Maxime
Directory of Experts
Lamothe, Maxime
Directory of Experts
Publications by date
Journal article (14)
Conference paper (12)
Book
Book chapter
Patent
Report
Thesis
Dataset (4)
Teaching resource
Image
Audio recording
Video recording
Other
Maxime Lamothe (30)
- 2025 (6)
Dataset Conference paper Qin, Q., Li, H., Merlo, E., & Lamothe, M. (2025, April). Automated, Unsupervised, and Auto-Parameterized Inference of Data Patterns and Anomaly Detection [Paper]. 47th International Conference on Software Engineering (ICSE 2025), Ottawa, ON, Canada.Conference paper Ekhlasi, M., Prakash, A., Lamothe, M., & Dagenais, M. (2025, April). InsightAI: Root Cause Analysis in Large Log Files with Private Data Using Large Language Model [Paper]. 4th International Conference on AI Engineering – Software Engineering for AI (CAIN 2025), Ottawa, ON, Canada.Conference paper Kazemi, F., Lamothe, M., & McIntosh, S. (2025, September). Interrogative Comments Posed by Review Comment Generators: An Empirical Study of Gerrit [Paper]. International Symposium on Empirical Software Engineering and Measurement (ESEM 2025), Honolulu, HI, USA (12 pages).Conference paper Shahedi, K., Lamothe, M., Khomh, F., & Li, H. (2025, April). JPerfEvo: A Tool for Tracking Method-Level Performance Changes in Java Projects [Paper]. 22nd International Conference on Mining Software Repositories (MSR 2025), Ottawa, ON, Canada.Journal article Shahedi, K., Li, H., Lamothe, M., & Khomh, F. (2025). Tracing Optimization for Performance Modeling and Regression Detection. ACM Transactions on Software Engineering and Methodology.
- 2024 (7)
Conference paper Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (2024, April). A Mutation-Guided Assessment of Acceleration Approaches for Continuous Integration: An Empirical Study of YourBase [Paper]. 2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR 2024), Lisbon, Portugal.Journal article Kazemi, F., Lamothe, M., & McIntosh, S. (2024). Characterizing the Prevalence Distribution and Duration of Stale Reviewer Recommendations. IEEE Transactions on Software Engineering, 3422369 (14 pages).Journal article Robillard, M. P., Arya, D. M., Ernst, N. A., Guo, J. L. C., Lamothe, M., Nassif, M., Novielli, N., Serebrenik, A., Steinmacher, I., & Stol, K.-J. (2024). Communicating Study Design Trade-offs in Software Engineering. ACM Transactions on Software Engineering and Methodology, 33(5), 112 (10 pages).Journal article Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (2024). How Trustworthy is Your CI Accelerator? A Comparison of the Trustworthiness of CI Acceleration Products. IEEE Software, 3395616 (6 pages).Journal article Oueslati, K., Laberge, G., Lamothe, M., & Khomh, F. (2024). Mining Action Rules for Defect Reduction Planning. Proceedings of the ACM on Software Engineering, 1(FSE), 2309-2331.Dataset Kazemi, F., Lamothe, M., & McIntosh, S. (2024). Replication Package and Online Appendix for "Characterizing the impact, distribution, and duration of stale reviewer recommendations" [Dataset].Journal article Ghadesi, A., Lamothe, M., & Li, H. (2024). What causes exceptions in machine learning applications? Mining machine learning-related stack traces on Stack Overflow. Empirical Software Engineering, 29, 107 (37 pages).
- 2023 (3)
Journal article Meidani, M., Lamothe, M., & McIntosh, S. (2023). Assessing the exposure of software changes: The DiPiDi approach. Empirical Software Engineering, 28(2), 36 pages.Journal article Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (2023). Online appendix. Zenodo (CERN European Organization for Nuclear Research).Dataset Ghadesi, A., Li, H., & Lamothe, M. (2023). What Causes Exceptions in Machine Learning Applications? Mining Machine Learning-Related Stack Traces on Stack Overflow [Dataset].
- 2022 (7)
Journal article Lamothe, M., Shang, W., & Chen, T.-H. P. (2022). A3: Assisting Android API Migrations Using Code Examples. IEEE Transactions on Software Engineering, 48(2), 417-431.Journal article Lamothe, M., Li, H., & Shang, W. (2022). Assisting Example-based API Misuse Detection via Complementary Artificial Examples. IEEE Transactions on Software Engineering, 48(9), 3410-3422.Dataset Kazemi, F., Lamothe, M., & McIntosh, S. (2022). Dataset of the study "Exploring the Notion of Risk in Reviewer Recommendation" [Dataset].Conference paper Kazemi, F., Lamothe, M., & McIntosh, S. (2022, October). Exploring the Notion of Risk in Code Reviewer Recommendation [Paper]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus.Conference paper Wen, R., Lamothe, M., & McIntosh, S. (2022, May). How does code reviewing feedback evolve?: A longitudinal study at Dell EMC [Paper]. IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE 2022), Pittsburgh, PA, USA.Conference paper Gallaba, K., Lamothe, M., & McIntosh, S. (2022, May). Lessons from eight years of operational data from a continuous integration service: An exploratory case study of CircleCI [Paper]. IEEE/ACM 44th International Conference on Software Engineering (ICSE 2022), Pittsburgh, PA, USA.Journal article Zhang, H., Tang, Y., Lamothe, M., Li, H., & Shang, W. (2022). Studying logging practice in test code. Empirical Software Engineering, 27(4), 83 (45 pages).
- 2021 (4)
Journal article Quach, S., Lamothe, M., Kamei, Y., & Shang, W. (2021). An empirical study on the use of SZZ for identifying inducing changes of non-functional bugs. Empirical Software Engineering, 26(4).Journal article Lamothe, M., Gueheneuc, Y. G., & Shang, W. (2021). A Systematic Review of API Evolution Literature. ACM Computing Surveys, 54(8), 1-36.Journal article Quach, S., Lamothe, M., Adams, B., Kamei, Y., & Shang, W. (2021). Evaluating the impact of falsely detected performance bug-inducing changes in JIT models. Empirical Software Engineering, 26(5).Conference paper Gauthier, I. X., Lamothe, M., Mussbacher, G., & McIntosh, S. (2021, November). Is Historical Data an Appropriate Benchmark for Reviewer Recommendation Systems? : AA Case Study of the Gerrit Community [Paper]. 36th IEEE/ACM International Conference on Automated Software Engineering (ASE 2021), Melbourne, Australia.
- 2020 (2)
Conference paper Lamothe, M. (2020, June). Bridging the divide between API users and API developers by mining public code repositories [Paper]. 42nd ACM/IEEE International Conference on Software Engineering, Seoul, South Korea.Conference paper Lamothe, M., & Shang, W. (2020, June). When APIs are intentionally bypassed [Paper]. 42nd ACM/IEEE International Conference on Software Engineering, Seoul, South Korea.
- 2018 (1)
Conference paper Lamothe, M., & Shang, W. (2018, May). Exploring the use of automated API migrating techniques in practice [Paper]. 15th International Conference on Mining Software Repositories, Gothenburg, Sweden.