Narasiah, H., Kitouni, O., Scorsoglio, A., Sturdza, B. K., Hatcher, S., Katcher, K., Khalesi, J., Garcia, D., & Kusner, M. J. (2024). Machine learning discovery of cost-efficient dry cooler designs for concentrated solar power plants. Scientific Reports, 14(1), 19086.
Directory of Experts
Kusner, Matt J.

Directory of Experts
Kusner, Matt J.
Directory of Experts
Publications by type
Journal article (3)
Conference paper (31)
Book
Book chapter
Patent
Report
Thesis
Dataset
Teaching resource
Image
Audio recording
Video recording
Other
Matthew Joseph Kusner (34)
- Journal articles (3)
- 2024
Journal article Journal article Gopakumar, V., Pamela, S., Zanisi, L., Li, Z., Gray, A., Brennand, D., Bhatia, N., Stathopoulos, G., Kusner, M. J., Deisenroth, M. P., & Anandkumar, A. (2024). Plasma surrogate modelling using Fourier neural operators. Nuclear Fusion, 64(5), 056025 (36 pages).
- 2020
Journal article Kusner, M. J., & Loftus, J. R. (2020). The Long Road to Fairer Algorithms. Nature, 578(7793), 34-36.
- 2024
- Conference papers (31)
- 2024
Conference paper Tsai, K., Pfohl, S. R., Salaudeen, O., Chiou, N., Kusner, M. J., D'amour, A., Koyejo, S., & Gretton, A. (2024, May). Proxy Methods for Domain Adaptation [Paper]. 27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024), Valencia, Spain (29 pages). Published in Proceedings of Machine Learning Research.
- 2023
Conference paper Alabdulmohsin, I., Chiou, N., D'Amour, A., Gretton, A., Koyejo, S., Kusner, M. J., Pfohl, S. R., Salaudeen, O., Schrouff, J., & Tsai, K. (2023, April). Adapting to latent subgroup shifts via concepts and proxies [Paper]. 26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023), Palau de Congressos, Valencia, Spain. Published in Proceedings of Machine Learning Research, 206.Conference paper Kaddour, J., Key, O., Nawrot, P., Minervini, P., & Kusner, M. J. (2023, December). No train no gain: revisiting efficient training algorithms for transformer-based language models [Paper]. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA.Conference paper Padh, K., Zeitler, J., Watson, D. S., Kusner, M. J., Silva, R., & Kilbertus, N. (2023, April). Stochastic Causal Programming for Bounding Treatment Effects [Paper]. 2nd Conference on Causal Learning and Reasoning (CCLR 2023), Tübingen, Germany (35 pages). Published in Proceedings of Machine Learning Research, 213.
- 2022
Conference paper Zhu, Y., Gultchin, L., Gretton, A., Kusner, M. J., & Silva, R. (2022, August). Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach [Paper]. 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), Eindhoven, The Netherlands. Published in Proceedings of Machine Learning Research, 180.Conference paper Zantedeschi, V., Kaddour, J., Franceschi, L., Kusner, M. J., & Niculae, V. (2022, April). DAG Learning on the Permutahedron [Poster]. 10th International Conference on Learning Representations (ICLR 2023) (9 pages).Conference paper Maus, N. T., Jones, H. T., Moore, J. S., Kusner, M. J., Bradshaw, J., & Gardner, J. R. (2022, November). Local Latent Space Bayesian Optimization over Structured Inputs [Paper]. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisiana, USA (14 pages).Conference paper Kaddour, J., Liu, L., Silva, R., & Kusner, M. J. (2022, November). When Do Flat Minima Optimizers Work? [Paper]. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisiana (19 pages).
- 2021
Conference paper Kaddour, J., Zhu, Y., Liu, Q., Kusner, M. J., & Silva, R. (2021, December). Causal effect inference for structured treatments [Paper]. 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021).Conference paper Liu, Q., Kusner, M. J., & Blunsom, P. (2021, June). Counterfactual Data Augmentation for Neural Machine Translation [Paper]. Conference of the North-American-Chapter of the Association-for-Computational-Linguistics - Human Language Technologies (NAACL-HLT 2021).Conference paper Zantedeschi, V., Kusner, M. J., & Niculae, V. (2021, July). Learning Binary Decision Trees by Argmin Differentiation [Paper]. Unspecified.Conference paper Agrawal, N., Bell, J., Gascón, A., & Kusner, M. J. (2021, November). MPC-friendly commitments for publicly verifiable covert security [Paper]. ACM SIGSAC Conference on Computer and Communications Security (CCS 2021).Conference paper Gultchin, L., Watson, D. S., Kusner, M. J., & Silva, R. (2021, July). Operationalizing complex causes: a pragmatic view of mediation [Paper]. 38th International Conference on Machine Learning (ICML 2021). Published in Proceedings of Machine Learning Research, 139.Conference paper Mastouri, A., Zhu, Y., Gultchin, L., Korba, A., Silva, R., Kusner, M. J., Gretton, A., & Muandet, K. (2021, July). Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction [Paper]. 38th International Conference on Machine Learning (ICML 2021). Published in Proceedings of Machine Learning Research, 139.Conference paper Wang, H., Liu, Q., Yue, X., Lasenby, J., & Kusner, M. J. (2021, October). Unsupervised Point Cloud Pre-training via Occlusion Completion [Paper]. 18th IEEE/CVF International Conference on Computer Vision (ICCV 2021), Montreal, Quebec, Canada.
- 2020
Conference paper Kilbertus, N., Kusner, M. J., & Silva, R. (2020, December). A class of algorithms for general instrumental variable models [Paper]. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.Conference paper Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H. S., & Hernández-Lobato, J. M. (2020, December). Barking up the right tree: an approach to search over molecule synthesis DAGs [Paper]. 34th International Conference on Neural Information Processing Systems (NIPS 2020), Vancouver, British Columbia, Canada.Conference paper Gultchin, L., Kusner, M. J., Kanade, V., & Silva, R. (2020, August). Differentiable causal backdoor discovery [Paper]. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Published in Proceedings of Machine Learning Research, 108.
- 2019
Conference paper Bradshaw, J., Kusner, M. J., Paige, B., Segler, M. H. S., & Hernández-Lobato, J. M. (2019, May). A generative model for electron paths [Paper]. 7th International Conference on Learning Representations (ICLR 2019), New Orleans, Louisiana, USA (19 pages).Conference paper Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H. S., & Hernández-Lobato, J. M. (2019, December). A model to search for synthesizable molecules [Paper]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.Conference paper Kusner, M. J., Russell, C., Loftus, J. R., & Silva, R. (2019, June). Making Decisions that Reduce Discriminatory Impact [Paper]. 36th International Conference on Machine Learning (ICML 2019), Long Beach, California, USA. Published in Proceedings of Machine Learning Research, 97.Conference paper Agrawal, N., Shamsabadi, A. S., Kusner, M. J., & Gascón, A. (2019, November). QUOTIENT: two-party secure neural network training and prediction [Paper]. ACM SIGSAC Conference on Computer and Communications Security (CCS 2019), London, United Kingdom.Conference paper Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., & Silva, R. (2019, July). The Sensitivity of Counterfactual Fairness to Unmeasured Confounding [Paper]. 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel. Published in Proceedings of Machine Learning Research, 115.
- 2018
Conference paper Kilbertus, N., Gascón, A., Kusner, M. J., Veale, M., Gummadi, K. P., & Weller, A. (2018, July). Blind justice: fairness with encrypted sensitive attributes [Paper]. 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden. Published in Proceedings of Machine Learning Research, 80.Conference paper Janz, D., Westhuizen, J. , Paige, B., Kusner, M. J., & Hernández-Lobato, J. M. (2018, July). Learning a Generative Model for Validity in Complex Discrete Structures [Paper]. 35th International Conference on Machine Learning (ICLR 2018), Stockholm, Sweden (12 pages).Conference paper Sanyal, A., Kusner, M. J., Gascón, A., & Kanade, V. (2018, July). TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service [Paper]. 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden. Published in Proceedings of Machine Learning Research, 80.
- 2017
Conference paper Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017, December). Counterfactual fairness [Paper]. 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.Conference paper Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017, August). Grammar Variational Autoencoder [Paper]. 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia. Published in Proceedings of Machine Learning Research, 70.Conference paper Russell, C., Kusner, M. J., Loftus, J. R., & Silva, R. (2017, December). When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness [Paper]. 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Red Hook, New York. USA.
- 2016
Conference paper Huang, G., Guo, C., Kusner, M. J., Sun, Y., Weinberger, K. Q., & Sha, F. (2016, December). Supervised word mover's distance [Paper]. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
- 2014
Conference paper Gardner, J. R., Kusner, M. J., Xu, Z., Weinberger, K. Q., & Cunningham, J. P. (2014, June). Bayesian optimization with inequality constraints [Paper]. 31st International Conference on Machine Learning (ICML 2014), Beijing, China. Published in Proceedings of Machine Learning Research, 32(2).
- 2024