Directory of Experts

You are here

Back to search results
Thomas Hurtut
B.Ing. (Supélec), M.Ing. (Poly), Ph.D. (Télécom ParisTech/Poly), Postdoc (Inria)

Research interests and affiliations

Research interests
  • 2D computer graphics
  • Generative and descriptive modeling of images
  • Generative modeling of vector textures
  • Authoring tools for the stylization of image content
  • Expressive/Non-photorealistic rendering
  • Stylized/expressive image content modeling
Expertise type(s) (NSERC subjects)
  • 2603 Computer vision
  • 2604 Intelligent systems applications
  • 2605 Pattern analysis and machine intelligence
  • 2707 Graphics
  • 2708 Image and video processing


Recent publications
Conference paper
Bléron, A., Vergne, R., Hurtut, T. & Thollot, J. (2018). Motion-coherent stylization with screen-space image filters. Paper presented at the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering (EXPRESSIVE 2018), Victoria, BC (13 pages). Retrieved from
Conference paper
Christophe, S., Duménieu, B., Masse, A., Hoarau, C., Ory, J., Bédif, M., Lecordix, F., Mellado, N., Turbet, J., Loi, H., Hurtut, T., Vanderhaeghe, D., Vergne, R. & Thollot, J. (2017). Expressive map design : OGC SLD/SE++ extension for expressive map styles. Paper presented at the 28th International Cartographic Conference (ICC 2017), Washington, D.C., USA (4 pages).
Journal article
Arbelot, B., Vergne, R., Hurtut, T. & Thollot, J. (2017). Local texture-based color transfer and colorization. Computers & Graphics, 62, 15-27. Retrieved from
Conference paper
Gutierrez, J., Rabin, J., Galerne, B. & Hurtut, T. (2017). Optimal Patch Assignment for Statistically Constrained Texture Synthesis. Paper presented at the 6th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM 2017), Kolding, Denmark (pp. 172-183). Retrieved from

Supervision at Polytechnique


  • Ph.D. Thesis (1)

    • Christodoulidis, A. (2017). Segmentation and Characterization of Small Retinal Vessels in Fundus Images Using the Tensor Voting Approach (Ph.D. Thesis, École Polytechnique de Montréal). Retrieved from
  • Master's Thesis (2)

    • Schmitt, M. (2017). Content-Based Image Enhancement for Eye Fundus Images Visualization (Master's Thesis, École Polytechnique de Montréal). Retrieved from
    • Jan Mahamad, T. (2016). Animation par l'exemple de texture vectorielle (Master's Thesis, École Polytechnique de Montréal). Retrieved from