Calendrier

Séminaire : An l_1 -augmented Lagrangian algorithm and why, at least sometimes, it is a very good idea

Séminaire : An l_1 -augmented Lagrangian algorithm and why, at least sometimes, it is a very good idea

Titre : An l_1 -augmented Lagrangian algorithm and why, at least sometimes, it is a very good idea

Conférencier : Andrew R. Conn – IBM TJ Watson Research Center, États-Unis 

For almost 50 years l_2-Augmented Lagrangian algorithms have been around and they are still frequently used today. One way of looking at them is to consider them as a modification of the inexact quadratic penalty function (which requires that the penalty parameter becomes unbounded) by adding Lagrangian terms. The resulting advantage is that by way of updating the Lagrangian multipliers one can solve the original constrained problem whilst bounding the penalty parameter.

In this talk I will describe an l_1-Augmented Lagrangian which one could consider as a modification of the exact l_1-penalty function by adding Lagrangian terms. Since the penalty parameter for exact penalty functions remains bounded anyway and furthermore the l_1 exact penalty function is not differentiable, this does not sound like a good idea. I hope to convince you otherwise.

I will include, motivation, theory, context and some provisional numerical results

---

Entrée gratuite.
Bienvenue à tous!

Date

Jeudi 6 juillet 2017
Débute à 10h45

Prix

gratuit

Contact

Lieu

Université de Montréal - Pavillon André-Aisenstadt
2920, chemin de la Tour
Montréal
QC
Canada
H3T 1N8
514 343-6111
4488

Catégories