Calendrier

Séminaire : Convex fuzzy k-medoids clustering

Séminaire : Convex fuzzy k-medoids clustering

Séminaire “Un chercheur du GERAD vous parle!”

Titre : Convex fuzzy k-medoids clustering

Conférencier : Daniel Aloise – Professeur agrégé, Département de génie informatique et génie logiciel, Polytechnique Montréal, Canada

Résumé : K-medoids clustering is among the most popular methods for cluster analysis, but it carries several assumptions about the nature of the latent clusters. In this work, we introduce the Convex Fuzzy k -Medoids (CFKM) model, whose underlying formulation not only relaxes the assumption that objects must be assigned entirely to one and only one medoid, but also that medoids must be assigned entirely to one and only one cluster. Moreover, due to its convexity, CFKM resolution is completely robust to initialization. We compare our model with two fuzzy k -medoids clustering models found in the literature: the Fuzzy k -Medoids (FKM) and the Fuzzy Clustering with Multi-Medoids (FMMdd), both solved approximately by heuristics because of their hard computational complexity. Our experiments in synthesized and real-world data sets reveal that our model can uniquely discover important aspects of clustered data which are inherently fuzzy in nature, besides being more robust regarding the hyperparameters of the fuzzy clustering task.

---

Du café et des biscuits seront offerts au début du séminaire.
Bienvenue à toutes et à tous!

Date

Mercredi 13 novembre 2019
Débute à 15h30

Prix

gratuit

Contact

Lieu

Pavillon André-Aisenstadt
Campus de l'Université de Montréal
2920, chemin de la Tour
Montréal QC H3T 1J4
Canada
4488

Catégories