
Antoine Saucier
Professeur agrégé
Département de mathématiques et de génie industriel
| 1 | Saucier, A., Audet, C. (2012). Construction of Sparse Signal Representations With Adaptive Multiscale Orthogonal Bases. Signal Processing, 92(6), p. 1446-1457. |
| 2 | Saucier, A. (2010). New Periodograms for Single-Tone Frequency Estimation in the Presence of an Additive Polynomial Background Signal. Signal Processing, 90(6), p. 1800-1814. |
| 3 | Saucier, A., Frappier, C., Chapuis, R.P. (2010). Sinusoidal Oscillations Radiating From a Cylindrical Source in Thermal Conduction or Groundwater Flow: Closed-Form Solutions. International Journal for Numerical and Analytical Methods in Geomechanics, 34(16), p. 1743-1765. |
| 4 | El Ouassini, A., Saucier, A., Marcotte, D., Favis, B.D. (2008). A Patchwork Approach to Stochastic Simulation: a Route Towards the Analysis of Morphology in Multiphase Systems. Chaos Solitons & Fractals, 36(2), p. 418-436. |
| 5 | Saucier, A., Soumis, F. (2006). Fractal Methods and the Problem of Estimating Scaling Exponents: A New Approach Based on Upper and Lower Linear Bounds. Chaos, Solitons and Fractals, 28(5), p. 1337-1346. |
| 6 | Saucier, A., Marchant, M., Chouteau, M. (2006). A Fast and Accurate Frequency Estimation Method for Canceling Harmonic Noise in Geophysical Records. Geophysics, 71(1), p. 7-18. |
| 7 | Saucier, A. (2005). Construction of Data-Adaptive Orthogonal Wavelet Bases With an Extension of Principal Component Analysis. Applied and Computational Harmonic Analysis, 18(3), p. 300-328. |
| 8 | Saucier, A., Degorce, J.Y., Meunier, M. (2004). Analytical Solutions of a Growth Model for a Melt Region Induced by a Focused Laser Beam. Siam Journal on Applied Mathematics, 64(6), p. 2076-2095. |
| 9 | Saucier, A. (2004). Multiscale Principal Components. Thinking in Patterns: Fractals and Related Phenomena in Nature. Papers Based on Presentations at the 8th International Conference, Fractal 2004, p. 291-300. |
| 10 | Degorce, J.-Y., Saucier, A., Meunier, M. (2003). A Simple Analytical Method for the Characterization of the Melt Region of a Semiconductor Under Focused Laser Irradiation. Applied Surface Science, 208-209, p. 267-271. |
| 11 | Saucier, A. (2003). Data-Adaptive Orthogonal Wavelet Bases Obtained Via Principal Component Analysis. CISST'03: Proceeding of the International Conference on Imaging Science, Systems and Technology, Vols 1 and 2, p. 24-30. |
| 12 | Khue, P.N., Huseby, O., Saucier, A., Muller, J. (2002). Application of Generalized Multifractal Analysis for Characterization of Geological Formations. Journal of Physics. Condensed Matter, 14(9), p. 2347-2352. |
| 13 | Saucier, A. (2002). Localized Principal Components. Emergent Nature-Patterns, Growth and Scaling in the Sciences. Conference Fractal 2002, p. 315-324. |
| 14 | Saucier A. (2002). Méthodes multifaciales pour l'analyse d'images et de signaux. Lois d'échelle fractales et ondelettes. Hermes-science. p. 165-204. |
| 15 | Saucier, A., Muller, J. (2002). Assessing the Scope of the Multifractal Approach to Textural Characterization With Statistical Reconstruction of Images. Physica. A, Theoretical and Statistical Physics, 311(1-2), p. 231-259. |
| 16 | Saucier, A., Muller, J. (2002). Using Principal Component Analysis to Enhance the Generalized Multifractal Analysis Approach to Textural Segmentation : Theory and Application to Microresistivity Well Logs. Physica. A, Theoretical and Statistical Physics, 309(3-4), p. 419-444. |
| 17 | McKenty, F., Saucier, A., Trépanier, J.Y. (1999). Design Optimization of Hydrogen Flow Channels. (CERCA technical report). 120 p. |
| 18 | Saucier, A., Miller, J. (1999). Textural Analysis of Disordered Materials Materials With Multifractals. Physica. A, Theoretical and Statistical Physics, 267, p. 221-238. |
| 19 | Saucier, A., Muller, J. (1999). Generalization of Multifractal Analysis Based on Polynomial Expansions on the Generating Function. Fractal Theory and Applications in Engineering, p. 81-91. |
| 20 | Saucier, A., Muller, J. (1999). New Statatistical Textural Transforms for Non-Stationary Signals: Application to Generalized Multifractal Analysis. Paradigms of Complexity, Fractals Ans Structure in the Sciences, p. 203-214. |