Polytechnique > Recherche > Répertoire > Un professeur ou chercheur

Répertoire des expertises

Photo de Antoine Saucier

Antoine Saucier

Professeur agrégé
Département de mathématiques et de génie industriel

Publications à Polytechnique

Ces données sont extraites du Répertoire des publications de l'École Polytechnique de Montréal. La liste ci-dessous contient seulement les publications auxquelles a participé le professeur ou le chercheur depuis son entrée en fonction à l’École. De plus, certaines publications ne sont pas dans cette liste, notamment les notes de cours et les rapports techniques internes plus d'information...

1Saucier, A., Audet, C. (2012). Construction of Sparse Signal Representations With Adaptive Multiscale Orthogonal Bases. Signal Processing, 92(6), p. 1446-1457. 
2Saucier, A. (2010). New Periodograms for Single-Tone Frequency Estimation in the Presence of an Additive Polynomial Background Signal. Signal Processing, 90(6), p. 1800-1814. 
3Saucier, A., Frappier, C., Chapuis, R.P. (2010). Sinusoidal Oscillations Radiating From a Cylindrical Source in Thermal Conduction or Groundwater Flow: Closed-Form Solutions. International Journal for Numerical and Analytical Methods in Geomechanics, 34(16), p. 1743-1765. 
4El Ouassini, A., Saucier, A., Marcotte, D., Favis, B.D. (2008). A Patchwork Approach to Stochastic Simulation: a Route Towards the Analysis of Morphology in Multiphase Systems. Chaos Solitons & Fractals, 36(2), p. 418-436. 
5Saucier, A., Soumis, F. (2006). Fractal Methods and the Problem of Estimating Scaling Exponents: A New Approach Based on Upper and Lower Linear Bounds. Chaos, Solitons and Fractals, 28(5), p. 1337-1346. 
6Saucier, A., Marchant, M., Chouteau, M. (2006). A Fast and Accurate Frequency Estimation Method for Canceling Harmonic Noise in Geophysical Records. Geophysics, 71(1), p. 7-18. 
7Saucier, A. (2005). Construction of Data-Adaptive Orthogonal Wavelet Bases With an Extension of Principal Component Analysis. Applied and Computational Harmonic Analysis, 18(3), p. 300-328. 
8Saucier, A., Degorce, J.Y., Meunier, M. (2004). Analytical Solutions of a Growth Model for a Melt Region Induced by a Focused Laser Beam. Siam Journal on Applied Mathematics, 64(6), p. 2076-2095. 
9Saucier, A. (2004). Multiscale Principal Components. Thinking in Patterns: Fractals and Related Phenomena in Nature. Papers Based on Presentations at the 8th International Conference, Fractal 2004, p. 291-300. 
10Degorce, J.-Y., Saucier, A., Meunier, M. (2003). A Simple Analytical Method for the Characterization of the Melt Region of a Semiconductor Under Focused Laser Irradiation. Applied Surface Science, 208-209, p. 267-271. 
11Saucier, A. (2003). Data-Adaptive Orthogonal Wavelet Bases Obtained Via Principal Component Analysis. CISST'03: Proceeding of the International Conference on Imaging Science, Systems and Technology, Vols 1 and 2, p. 24-30. 
12Khue, P.N., Huseby, O., Saucier, A., Muller, J. (2002). Application of Generalized Multifractal Analysis for Characterization of Geological Formations. Journal of Physics. Condensed Matter, 14(9), p. 2347-2352. 
13Saucier, A. (2002). Localized Principal Components. Emergent Nature-Patterns, Growth and Scaling in the Sciences. Conference Fractal 2002, p. 315-324. 
14Saucier A. (2002). Méthodes multifaciales pour l'analyse d'images et de signaux. Lois d'échelle fractales et ondelettes. Hermes-science. p. 165-204.
15Saucier, A., Muller, J. (2002). Assessing the Scope of the Multifractal Approach to Textural Characterization With Statistical Reconstruction of Images. Physica. A, Theoretical and Statistical Physics, 311(1-2), p. 231-259. 
16Saucier, A., Muller, J. (2002). Using Principal Component Analysis to Enhance the Generalized Multifractal Analysis Approach to Textural Segmentation : Theory and Application to Microresistivity Well Logs. Physica. A, Theoretical and Statistical Physics, 309(3-4), p. 419-444. 
17McKenty, F., Saucier, A., Trépanier, J.Y. (1999). Design Optimization of Hydrogen Flow Channels. (CERCA technical report). 120 p.
18Saucier, A., Miller, J. (1999). Textural Analysis of Disordered Materials Materials With Multifractals. Physica. A, Theoretical and Statistical Physics, 267, p. 221-238. 
19Saucier, A., Muller, J. (1999). Generalization of Multifractal Analysis Based on Polynomial Expansions on the Generating Function. Fractal Theory and Applications in Engineering, p. 81-91. 
20Saucier, A., Muller, J. (1999). New Statatistical Textural Transforms for Non-Stationary Signals: Application to Generalized Multifractal Analysis. Paradigms of Complexity, Fractals Ans Structure in the Sciences, p. 203-214. 

 

© École Polytechnique de Montréal
Bottin | Plan du site | Recherche | Conditions