Trajectory Management and Analysis : Différence entre versions

De Transport
Ligne 14 : Ligne 14 :
 
** motion prediction from historical data / large datasets
 
** motion prediction from historical data / large datasets
 
* Use of Catch for tests (https://github.com/philsquared/Catch): [https://raw.github.com/philsquared/Catch/master/single_include/catch.hpp header] only
 
* Use of Catch for tests (https://github.com/philsquared/Catch): [https://raw.github.com/philsquared/Catch/master/single_include/catch.hpp header] only
 +
 +
==Trajectory Filtering==
 +
* Wikipedia https://en.wikipedia.org/wiki/Numerical_differentiation https://en.wikipedia.org/wiki/Numerical_smoothing_and_differentiation https://en.wikipedia.org/wiki/Finite_difference_coefficients
 +
* papers: (from https://encrypted.google.com/search?hl=en&q=Savitzky-Golay%20vehicle%20trajectories)
 +
http://www.sciencedirect.com/science/article/pii/S0968090X1100091X https://encrypted.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCcQFjAB&url=http%3A%2F%2Fentpe.fr%2Ffr%2Fcontent%2Fdownload%2F3451%2F21866%2Ffile%2F09-3831.pdf&ei=FtnrU6uFN5D2yQSKu4DoCw&usg=AFQjCNGdla4RfBqPPmGR_KC8_lAUH2eE0A&sig2=PKT_UdGYDQYQfyekvvKerQ&bvm=bv.72938740,d.aWw http://www.academia.edu/6190206/Using_Drivers_Jerks_Profile_in_Computer_Vision-Based_Traffic_Safety_Evaluations._In_Transportation_Research_Board_93rd_Annual_Meeting_January_2014
 +
 +
  
 
==Data Sources==
 
==Data Sources==

Version du 13 août 2014 à 17:34

  • Data structure for trajectories?
    • dimention: 2D, 3D?
    • time dimension: constant sampling rate?
  • Application data:
    • GPS: potentially different sampling rate
    • fixed point detection (eg, BT)
    • mobile id detection (BT from mobile sensors such as smartphones (Y. Malinovskiy))
    • tracking from video data: potential missing points (occlusion)
    • uncertain positions (spatial and time)
  • Exceptions ??
  • Python bindings: inspiration from OpenCV?
  • Generic interface to different database engines, possibly with spatial extensions (eg PostgreSQL with PostGIS, SQLite with SpatiaLite)
  • Representation of clusters, motion patterns: prototypes, paths, Gaussian processes
    • motion prediction from historical data / large datasets
  • Use of Catch for tests (https://github.com/philsquared/Catch): header only

Trajectory Filtering

http://www.sciencedirect.com/science/article/pii/S0968090X1100091X https://encrypted.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCcQFjAB&url=http%3A%2F%2Fentpe.fr%2Ffr%2Fcontent%2Fdownload%2F3451%2F21866%2Ffile%2F09-3831.pdf&ei=FtnrU6uFN5D2yQSKu4DoCw&usg=AFQjCNGdla4RfBqPPmGR_KC8_lAUH2eE0A&sig2=PKT_UdGYDQYQfyekvvKerQ&bvm=bv.72938740,d.aWw http://www.academia.edu/6190206/Using_Drivers_Jerks_Profile_in_Computer_Vision-Based_Traffic_Safety_Evaluations._In_Transportation_Research_Board_93rd_Annual_Meeting_January_2014


Data Sources

Resources