Trajectory Management and Analysis : Différence entre versions

De Transport
Ligne 4 : Ligne 4 :
 
* Application data:
 
* Application data:
 
** GPS: potentially different sampling rate
 
** GPS: potentially different sampling rate
** case of fixed point detection (BT)
+
** fixed point detection (eg, BT)
 +
** mobile id detection (BT from mobile sensors such as smartphones (Y. Malinovskiy))
 
** tracking from video data: potential missing points (occlusion)
 
** tracking from video data: potential missing points (occlusion)
 
* Exceptions ??
 
* Exceptions ??
 
* Python bindings: inspiration from OpenCV?
 
* Python bindings: inspiration from OpenCV?
 +
* Generic interface to different database engines, possibly with spatial extensions (eg PostgreSQL with PostGIS, SQLite with SpatiaLite)
 
* Representation of clusters, motion patterns: prototypes, paths, Gaussian processes
 
* Representation of clusters, motion patterns: prototypes, paths, Gaussian processes
 
* Use of Catch for tests (https://github.com/philsquared/Catch): [https://raw.github.com/philsquared/Catch/master/single_include/catch.hpp header] only
 
* Use of Catch for tests (https://github.com/philsquared/Catch): [https://raw.github.com/philsquared/Catch/master/single_include/catch.hpp header] only
Ligne 17 : Ligne 19 :
  
 
==Resources==
 
==Resources==
 +
* Microsoft Research http://research.microsoft.com/pubs/164590/KDD12-PopularRoutes.pdf
 
* Vlachos (LCSS) http://alumni.cs.ucr.edu/~mvlachos/publications.html
 
* Vlachos (LCSS) http://alumni.cs.ucr.edu/~mvlachos/publications.html
 
* http://www-ctp.di.fct.unl.pt/~fb/gisruk2011_final.pdf
 
* http://www-ctp.di.fct.unl.pt/~fb/gisruk2011_final.pdf
 
* http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5337231
 
* http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5337231
 
* http://isl.cs.unipi.gr/pubs/theses/Frentzos_PhD_Thesis_EN.pdf
 
* http://isl.cs.unipi.gr/pubs/theses/Frentzos_PhD_Thesis_EN.pdf

Version du 20 décembre 2012 à 17:37

  • Data structure for trajectories?
    • dimention: 2D, 3D?
    • time dimension: constant sampling rate?
  • Application data:
    • GPS: potentially different sampling rate
    • fixed point detection (eg, BT)
    • mobile id detection (BT from mobile sensors such as smartphones (Y. Malinovskiy))
    • tracking from video data: potential missing points (occlusion)
  • Exceptions ??
  • Python bindings: inspiration from OpenCV?
  • Generic interface to different database engines, possibly with spatial extensions (eg PostgreSQL with PostGIS, SQLite with SpatiaLite)
  • Representation of clusters, motion patterns: prototypes, paths, Gaussian processes
  • Use of Catch for tests (https://github.com/philsquared/Catch): header only

Data Sources

Resources