Public Transportation Datasets : Différence entre versions

De Transport
(Crash datasets)
 
(6 révisions intermédiaires par le même utilisateur non affichées)
Ligne 7 : Ligne 7 :
 
* PEMS-BAY / METR-LA liyaguang/DCRNN: Implementation of Diffusion Convolutional Recurrent Neural Network in Tensorflow https://github.com/liyaguang/DCRNN
 
* PEMS-BAY / METR-LA liyaguang/DCRNN: Implementation of Diffusion Convolutional Recurrent Neural Network in Tensorflow https://github.com/liyaguang/DCRNN
 
* NAVER-SEOUL, HyunWookL/PM-MemNet https://github.com/HyunWookL/PM-MemNet
 
* NAVER-SEOUL, HyunWookL/PM-MemNet https://github.com/HyunWookL/PM-MemNet
* TJRD TS: http://tjrdts.linknova.cn (vehicle were tracked through millimeter wave radar sensors installed along the freeways in sequence, and trajectories were spliced)
 
* Trajnet++ pedestrian trajectory detection benchmark https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
 
* pNEUMA https://open-traffic.epfl.ch/
 
 
* Uber movement data https://movement.uber.com/?lang=en-CA
 
* Uber movement data https://movement.uber.com/?lang=en-CA
* highD dataset (and more recent: inD, roundD, uniD, etc): new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/
+
* Detector-based traffic data from many countries https://utd19.ethz.ch/index.html
 +
* Trajectories
 +
** BirdsEyeTrajectoryReconstructionSHRP2NDS https://doi.org/10.15787/VTT1/EFYEJR https://github.com/Yiru-Jiao/BirdsEyeTrajectoryReconstructionSHRP2NDS
 +
** TJRD TS: http://tjrdts.linknova.cn (vehicle were tracked through millimeter wave radar sensors installed along the freeways in sequence, and trajectories were spliced)
 +
** Trajnet++ pedestrian trajectory detection benchmark https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
 +
** pNEUMA https://open-traffic.epfl.ch/
 +
** Vehicle-Crowd Intraction (VCI): DUT dataset https://github.com/dongfang-steven-yang/vci-dataset-dut, CITR dataset https://github.com/dongfang-steven-yang/vci-dataset-citr
 +
** Toyota Woven Prediction Dataset https://woven.toyota/en/prediction-dataset/
 +
** highD dataset (and more recent: inD, roundD, uniD, etc): new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/
 +
** Trajectories from Shanghai intersections https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai
 +
** Zen traffic data (2-km Japanese highway) https://zen-traffic-data.net/english/
 
* Open Data portals
 
* Open Data portals
 
** Montreal: counts, [http://donnees.ville.montreal.qc.ca/dataset/temps-de-parcours-sur-des-segments-routiers-historique Bluetooth travel times (continuous, 2016-2017)], [http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet MTL trajet travel survey with trajectories (2016, 2017)], [http://donnees.ville.montreal.qc.ca/dataset/trajets-individuels-velo-enregistre-mon-resovelo cyclist trajectories (2014)]
 
** Montreal: counts, [http://donnees.ville.montreal.qc.ca/dataset/temps-de-parcours-sur-des-segments-routiers-historique Bluetooth travel times (continuous, 2016-2017)], [http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet MTL trajet travel survey with trajectories (2016, 2017)], [http://donnees.ville.montreal.qc.ca/dataset/trajets-individuels-velo-enregistre-mon-resovelo cyclist trajectories (2014)]
 
** Quebec: [https://www.donneesquebec.ca/recherche/fr/dataset/rapports-d-accident road accidents], [https://www.donneesquebec.ca/recherche/fr/dataset/debit-de-circulation AADT]
 
** Quebec: [https://www.donneesquebec.ca/recherche/fr/dataset/rapports-d-accident road accidents], [https://www.donneesquebec.ca/recherche/fr/dataset/debit-de-circulation AADT]
* Detector-based traffic data from many countries https://utd19.ethz.ch/index.html
 
 
* TRB Traffic flow theory and characteristics committee (AHB45) http://tft.eng.usf.edu/docs.htm (bottom of the page)
 
* TRB Traffic flow theory and characteristics committee (AHB45) http://tft.eng.usf.edu/docs.htm (bottom of the page)
 
** includes links to Portland ITS Portal, PeMS in California, etc.
 
** includes links to Portland ITS Portal, PeMS in California, etc.
Ligne 90 : Ligne 96 :
 
* Multi-Object Multi-Actor, The first benchmark and dataset dedicated to activity parsing https://moma.stanford.edu
 
* Multi-Object Multi-Actor, The first benchmark and dataset dedicated to activity parsing https://moma.stanford.edu
 
* LUMPI: The Leibniz University Multi-Perspective Intersection Dataset https://data.uni-hannover.de/dataset/lumpi
 
* LUMPI: The Leibniz University Multi-Perspective Intersection Dataset https://data.uni-hannover.de/dataset/lumpi
 +
 +
==Crash datasets==
 +
* WTS: Woven Traffic Safety Dataset https://woven-visionai.github.io/wts-dataset-homepage/
 +
* CADP: A Novel Dataset for CCTV Traffic Camera based Accident Analysis https://ankitshah009.github.io/accident_forecasting_traffic_camera
 +
* TCP: Traffic Camera Pipeline https://github.com/BerkeleyAutomation/Traffic_Camera_Pipeline
  
 
==LIDAR datasets==
 
==LIDAR datasets==

Version actuelle en date du 9 juin 2025 à 11:59

PolyIT Datasets, generally not public for privacy reasons.

Traffic Data

Automated Vehicles

Video-related Datasets

Image datasets of known objects are useful to train and test object classifiers

Crash datasets

LIDAR datasets

Interesting applications https://scholar.google.com/scholar?&q=lidar%20urban%20environment%20parking

Driver Simulator/Naturalistic Driving