Public Transportation Datasets : Différence entre versions
De Transport
(→Automated Vehicles) |
(→Crash datasets) |
||
(32 révisions intermédiaires par le même utilisateur non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
+ | [[PolyDatasets|PolyIT Datasets]], generally not public for privacy reasons. | ||
+ | |||
==Traffic Data== | ==Traffic Data== | ||
− | * highD dataset: new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/ | + | * INTERnational, Adversarial and Cooperative moTION Dataset https://interaction-dataset.com/ |
+ | * NeurIPS 2022 Traffic4cast competition https://github.com/iarai/NeurIPS2022-traffic4cast | ||
+ | * CitySim https://github.com/ozheng1993/UCF-SST-CitySim-Dataset | ||
+ | * PEMS-BAY / METR-LA liyaguang/DCRNN: Implementation of Diffusion Convolutional Recurrent Neural Network in Tensorflow https://github.com/liyaguang/DCRNN | ||
+ | * NAVER-SEOUL, HyunWookL/PM-MemNet https://github.com/HyunWookL/PM-MemNet | ||
+ | * Uber movement data https://movement.uber.com/?lang=en-CA | ||
+ | * Detector-based traffic data from many countries https://utd19.ethz.ch/index.html | ||
+ | * Trajectories | ||
+ | ** BirdsEyeTrajectoryReconstructionSHRP2NDS https://doi.org/10.15787/VTT1/EFYEJR https://github.com/Yiru-Jiao/BirdsEyeTrajectoryReconstructionSHRP2NDS | ||
+ | ** TJRD TS: http://tjrdts.linknova.cn (vehicle were tracked through millimeter wave radar sensors installed along the freeways in sequence, and trajectories were spliced) | ||
+ | ** Trajnet++ pedestrian trajectory detection benchmark https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge | ||
+ | ** pNEUMA https://open-traffic.epfl.ch/ | ||
+ | ** Vehicle-Crowd Intraction (VCI): DUT dataset https://github.com/dongfang-steven-yang/vci-dataset-dut, CITR dataset https://github.com/dongfang-steven-yang/vci-dataset-citr | ||
+ | ** Toyota Woven Prediction Dataset https://woven.toyota/en/prediction-dataset/ | ||
+ | ** highD dataset (and more recent: inD, roundD, uniD, etc): new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/ | ||
+ | ** Trajectories from Shanghai intersections https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai | ||
+ | ** Zen traffic data (2-km Japanese highway) https://zen-traffic-data.net/english/ | ||
* Open Data portals | * Open Data portals | ||
** Montreal: counts, [http://donnees.ville.montreal.qc.ca/dataset/temps-de-parcours-sur-des-segments-routiers-historique Bluetooth travel times (continuous, 2016-2017)], [http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet MTL trajet travel survey with trajectories (2016, 2017)], [http://donnees.ville.montreal.qc.ca/dataset/trajets-individuels-velo-enregistre-mon-resovelo cyclist trajectories (2014)] | ** Montreal: counts, [http://donnees.ville.montreal.qc.ca/dataset/temps-de-parcours-sur-des-segments-routiers-historique Bluetooth travel times (continuous, 2016-2017)], [http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet MTL trajet travel survey with trajectories (2016, 2017)], [http://donnees.ville.montreal.qc.ca/dataset/trajets-individuels-velo-enregistre-mon-resovelo cyclist trajectories (2014)] | ||
** Quebec: [https://www.donneesquebec.ca/recherche/fr/dataset/rapports-d-accident road accidents], [https://www.donneesquebec.ca/recherche/fr/dataset/debit-de-circulation AADT] | ** Quebec: [https://www.donneesquebec.ca/recherche/fr/dataset/rapports-d-accident road accidents], [https://www.donneesquebec.ca/recherche/fr/dataset/debit-de-circulation AADT] | ||
− | |||
* TRB Traffic flow theory and characteristics committee (AHB45) http://tft.eng.usf.edu/docs.htm (bottom of the page) | * TRB Traffic flow theory and characteristics committee (AHB45) http://tft.eng.usf.edu/docs.htm (bottom of the page) | ||
** includes links to Portland ITS Portal, PeMS in California, etc. | ** includes links to Portland ITS Portal, PeMS in California, etc. | ||
Ligne 12 : | Ligne 29 : | ||
** Nevada http://challenger.nvfast.org/SPM/ | ** Nevada http://challenger.nvfast.org/SPM/ | ||
** Utah http://udottraffic.utah.gov/ATSPM/ | ** Utah http://udottraffic.utah.gov/ATSPM/ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Automated Vehicles== | ==Automated Vehicles== | ||
Ligne 31 : | Ligne 34 : | ||
* Waymo open https://waymo.com/open | * Waymo open https://waymo.com/open | ||
* Nuscenes https://www.nuscenes.org | * Nuscenes https://www.nuscenes.org | ||
+ | * Volvo https://developer.volvocars.com/open-datasets/cirrus/ | ||
==Video-related Datasets== | ==Video-related Datasets== | ||
Ligne 78 : | Ligne 82 : | ||
* AI city challenge: https://www.aicitychallenge.org/ (dataset CityFlow) | * AI city challenge: https://www.aicitychallenge.org/ (dataset CityFlow) | ||
* STREETS: A Novel Camera Network Dataset for Traffic Flow https://github.com/corey-snyder/STREETS | * STREETS: A Novel Camera Network Dataset for Traffic Flow https://github.com/corey-snyder/STREETS | ||
+ | * MOT challenge, includes other datasets https://motchallenge.net/ | ||
+ | * Event cameras | ||
+ | ** MVSEC: The Multi Vehicle Stereo Event Camera Dataset https://daniilidis-group.github.io/mvsec/ | ||
+ | ** DSEC Dataset: A Stereo Event Camera Dataset for Driving Scenarios https://dsec.ifi.uzh.ch/ | ||
+ | * DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios https://drivingstereo-dataset.github.io/ | ||
+ | * Sydney group: driving around Sydney campus http://its.acfr.usyd.edu.au/datasets/ | ||
+ | * Infrared data: FLIR https://www.flir.quebec/oem/adas/adas-dataset-form/ | ||
+ | * Infrared and visual comparison: CAMEL https://camel.ece.gatech.edu/ | ||
+ | * MOTSynth (pedestrian videos from GTA V): https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=42 | ||
+ | * Mobility Aids http://mobility-aids.informatik.uni-freiburg.de/ | ||
+ | * X world, EvalAI (CVPR2022 AVA Accessibility Vision and Autonomy Challenge) https://eval.ai/challenge/1690/overview https://openaccess.thecvf.com/content/ICCV2021/papers/Zhang_X-World_Accessibility_Vision_and_Autonomy_Meet_ICCV_2021_paper.pdf | ||
+ | * UCLA activity dataset https://vcla.stat.ucla.edu/Projects/Multiscale_Activity_Recognition/ | ||
+ | * Multi-Object Multi-Actor, The first benchmark and dataset dedicated to activity parsing https://moma.stanford.edu | ||
+ | * LUMPI: The Leibniz University Multi-Perspective Intersection Dataset https://data.uni-hannover.de/dataset/lumpi | ||
+ | |||
+ | ==Crash datasets== | ||
+ | * WTS: Woven Traffic Safety Dataset https://woven-visionai.github.io/wts-dataset-homepage/ | ||
+ | * CADP: A Novel Dataset for CCTV Traffic Camera based Accident Analysis https://ankitshah009.github.io/accident_forecasting_traffic_camera | ||
+ | * TCP: Traffic Camera Pipeline https://github.com/BerkeleyAutomation/Traffic_Camera_Pipeline | ||
+ | |||
+ | ==LIDAR datasets== | ||
+ | Interesting applications https://scholar.google.com/scholar?&q=lidar%20urban%20environment%20parking | ||
+ | * MulRan: Multimodal Range Dataset for Urban Place Recognition https://sites.google.com/view/mulran-pr | ||
+ | * Complex Urban LiDAR Data Set (more robotics?) http://irap.kaist.ac.kr/dataset | ||
==Driver Simulator/Naturalistic Driving== | ==Driver Simulator/Naturalistic Driving== |
Version actuelle en date du 9 juin 2025 à 11:59
PolyIT Datasets, generally not public for privacy reasons.
Sommaire
Traffic Data
- INTERnational, Adversarial and Cooperative moTION Dataset https://interaction-dataset.com/
- NeurIPS 2022 Traffic4cast competition https://github.com/iarai/NeurIPS2022-traffic4cast
- CitySim https://github.com/ozheng1993/UCF-SST-CitySim-Dataset
- PEMS-BAY / METR-LA liyaguang/DCRNN: Implementation of Diffusion Convolutional Recurrent Neural Network in Tensorflow https://github.com/liyaguang/DCRNN
- NAVER-SEOUL, HyunWookL/PM-MemNet https://github.com/HyunWookL/PM-MemNet
- Uber movement data https://movement.uber.com/?lang=en-CA
- Detector-based traffic data from many countries https://utd19.ethz.ch/index.html
- Trajectories
- BirdsEyeTrajectoryReconstructionSHRP2NDS https://doi.org/10.15787/VTT1/EFYEJR https://github.com/Yiru-Jiao/BirdsEyeTrajectoryReconstructionSHRP2NDS
- TJRD TS: http://tjrdts.linknova.cn (vehicle were tracked through millimeter wave radar sensors installed along the freeways in sequence, and trajectories were spliced)
- Trajnet++ pedestrian trajectory detection benchmark https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
- pNEUMA https://open-traffic.epfl.ch/
- Vehicle-Crowd Intraction (VCI): DUT dataset https://github.com/dongfang-steven-yang/vci-dataset-dut, CITR dataset https://github.com/dongfang-steven-yang/vci-dataset-citr
- Toyota Woven Prediction Dataset https://woven.toyota/en/prediction-dataset/
- highD dataset (and more recent: inD, roundD, uniD, etc): new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/
- Trajectories from Shanghai intersections https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai
- Zen traffic data (2-km Japanese highway) https://zen-traffic-data.net/english/
- Open Data portals
- TRB Traffic flow theory and characteristics committee (AHB45) http://tft.eng.usf.edu/docs.htm (bottom of the page)
- includes links to Portland ITS Portal, PeMS in California, etc.
- NGSIM dataset: traffic data for highways and urban corridors taken from multiple cameras on high buildings https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories
- Mobile century data https://bayen.berkeley.edu/downloads/mobile-century-data
- Traffic control data from the US
Automated Vehicles
- Argoverse https://www.argoverse.org/
- Waymo open https://waymo.com/open
- Nuscenes https://www.nuscenes.org
- Volvo https://developer.volvocars.com/open-datasets/cirrus/
Image datasets of known objects are useful to train and test object classifiers
- Public video data set for road transportation applications (PDTV) http://www.tft.lth.se/video/co-operation/data-exchange/ ftp://barbapappa.tft.lth.se/
- Old synthetic and traffic video data http://i21www.ira.uka.de/image_sequences/
- Comprehensive cars dataset: http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
- MIT car data http://cbcl.mit.edu/software-datasets/CarData.html and person data http://cbcl.mit.edu/software-datasets/PedestrianData.html
- MIT Traffic Dataset http://www.ee.cuhk.edu.hk/~xgwang/MITtraffic.html
- UIUC car detection http://cogcomp.cs.illinois.edu/Data/Car/ and CMU car data http://vasc.ri.cmu.edu/idb/html/car/
- UCSD method for people counting with dataset http://www.svcl.ucsd.edu/projects/peoplecnt/
- Oxford annotated pedestrian dataset (Town Centre) http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html#datasets
- PETS datasets http://www.cvg.rdg.ac.uk/slides/pets.html
- 2009: people tracking with multiple cameras http://www.cvg.rdg.ac.uk/PETS2009/ (http://www.cvg.rdg.ac.uk/PETS2009/a.html)
- 2001: people and cars ftp://ftp.pets.rdg.ac.uk/pub/PETS2001/
- CityCars and CityPedestrians http://www.psi.toronto.edu/index.php?q=flobject%20analysis
- Gavrila http://www.gavrila.net/Research/Pedestrian_Detection/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
- INRIA dataset used by N. Dalal (HoG classifiers) http://pascal.inrialpes.fr/data/human/
- Multi-View Car Dataset EPFL http://cvlab.epfl.ch/data/pose/
- Multiple object type (including cars) from multiple view http://www.vision.caltech.edu/savarese/3Ddataset.html
- Pascal-type object datasets: http://www.image-net.org/challenges/LSVRC/2012/browse-synsets
- ETH datasets http://www.vision.ee.ethz.ch/datasets/index.en.html
- VIRAT Video Dataset (surveillance, road users, car parks) http://www.viratdata.org/
- NGSIM dataset: highways and urban corridors taken from multiple cameras on high buildings, with the computed results http://ngsim-community.org/
- The PASCAL Visual Object Classes Homepage contains sets of images of objects of various types, including people, bicycles, cars, etc. http://pascallin.ecs.soton.ac.uk/challenges/VOC/ (see also MIT SUN dataset http://groups.csail.mit.edu/vision/SUN/ and Caltech http://www.vision.caltech.edu/Image_Datasets/Caltech256/, MIT CBCL StreetScenes http://cbcl.mit.edu/software-datasets/streetscenes/)
- KITTI vision benchmark suite (images+lidar) http://www.cvlibs.net/datasets/kitti/ (object detection benchmark http://www.cvlibs.net/datasets/kitti/eval_object.php) and Karlsruhe objects http://www.cvlibs.net/datasets/karlsruhe_objects.html
- Longterm Observation of Scenes with Tracks Dataset (LOST) at WUSL http://lost.cse.wustl.edu/browse
- TRaffic ANd COngestionS (TRANCOS) dataset, a novel benchmark for (extremely overlapping) vehicle counting in traffic congestion situation http://agamenon.tsc.uah.es/Personales/rlopez/data/trancos/
- GRAM Road-Traffic Monitoring (GRAM-RTM) dataset, a novel benchmark for multi-vehicle tracking in real-time http://agamenon.tsc.uah.es/Personales/rlopez/data/rtm/
- Amazing online open source tool for annotation (and using Amazon mechanical turk) http://mit.edu/vondrick/vatic/
- The Comprehensive Cars (CompCars) dataset http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
- Cityscapes Dataset (fine and coarse segmentation) https://www.cityscapes-dataset.com/
- with CityPersons https://arxiv.org/abs/1702.05693
- Traffic sign detection challenge http://benchmark.ini.rub.de/?section=gtsdb&subsection=news
- Common objects in context (Microsoft COCO dataset) http://cocodataset.org
- Miovision Traffic Camera Dataset http://podoce.dinf.usherbrooke.ca/
- Synthia dataset (SYNTHetic collection of Imagery and Annotations) http://synthia-dataset.net/
- WIDER Face & Pedestrian Challenge - Track 2: Pedestrian Detection https://competitions.codalab.org/competitions/19118
- BDD100K: A Large-scale Diverse Driving Video Database: http://bair.berkeley.edu/blog/2018/05/30/bdd/
- Stanford Drone Dataset: http://cvgl.stanford.edu/projects/uav_data/
- The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking https://sites.google.com/site/daviddo0323/projects/uavdt
- Collective Activity Dataset: https://vhosts.eecs.umich.edu/vision//activity-dataset.html
- Abnormal Event Detection at 150 FPS: http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/index.html
- Traffic Research, GRAPH@FIT, Brno University of Technology (camera calibration, car image box, speed measurements): https://medusa.fit.vutbr.cz/traffic/
- Vision Meets Drones http://aiskyeye.com/
- MOTChallenge: The Multiple Object Tracking Benchmark https://motchallenge.net/
- AI city challenge: https://www.aicitychallenge.org/ (dataset CityFlow)
- STREETS: A Novel Camera Network Dataset for Traffic Flow https://github.com/corey-snyder/STREETS
- MOT challenge, includes other datasets https://motchallenge.net/
- Event cameras
- MVSEC: The Multi Vehicle Stereo Event Camera Dataset https://daniilidis-group.github.io/mvsec/
- DSEC Dataset: A Stereo Event Camera Dataset for Driving Scenarios https://dsec.ifi.uzh.ch/
- DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios https://drivingstereo-dataset.github.io/
- Sydney group: driving around Sydney campus http://its.acfr.usyd.edu.au/datasets/
- Infrared data: FLIR https://www.flir.quebec/oem/adas/adas-dataset-form/
- Infrared and visual comparison: CAMEL https://camel.ece.gatech.edu/
- MOTSynth (pedestrian videos from GTA V): https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=42
- Mobility Aids http://mobility-aids.informatik.uni-freiburg.de/
- X world, EvalAI (CVPR2022 AVA Accessibility Vision and Autonomy Challenge) https://eval.ai/challenge/1690/overview https://openaccess.thecvf.com/content/ICCV2021/papers/Zhang_X-World_Accessibility_Vision_and_Autonomy_Meet_ICCV_2021_paper.pdf
- UCLA activity dataset https://vcla.stat.ucla.edu/Projects/Multiscale_Activity_Recognition/
- Multi-Object Multi-Actor, The first benchmark and dataset dedicated to activity parsing https://moma.stanford.edu
- LUMPI: The Leibniz University Multi-Perspective Intersection Dataset https://data.uni-hannover.de/dataset/lumpi
Crash datasets
- WTS: Woven Traffic Safety Dataset https://woven-visionai.github.io/wts-dataset-homepage/
- CADP: A Novel Dataset for CCTV Traffic Camera based Accident Analysis https://ankitshah009.github.io/accident_forecasting_traffic_camera
- TCP: Traffic Camera Pipeline https://github.com/BerkeleyAutomation/Traffic_Camera_Pipeline
LIDAR datasets
Interesting applications https://scholar.google.com/scholar?&q=lidar%20urban%20environment%20parking
- MulRan: Multimodal Range Dataset for Urban Place Recognition https://sites.google.com/view/mulran-pr
- Complex Urban LiDAR Data Set (more robotics?) http://irap.kaist.ac.kr/dataset
Driver Simulator/Naturalistic Driving
- Driver behavior profiling: An investigation with different smartphone sensors and machine learning https://github.com/jair-jr/driverBehaviorDataset
- Real World Driving to Assess Driver Workload https://www.hcilab.org/research/hcilab-driving-dataset/
- SIMULATOR STUDY I: A Multimodal Dataset for Various Forms of Distracted Driving https://osf.io/c42cn/