Public Transportation Datasets : Différence entre versions

De Transport
(Video-related Datasets)
(Crash datasets)
 
(40 révisions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
 +
[[PolyDatasets|PolyIT Datasets]], generally not public for privacy reasons.
 +
 
==Traffic Data==
 
==Traffic Data==
* highD dataset: new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/
+
* INTERnational, Adversarial and Cooperative moTION Dataset https://interaction-dataset.com/
* Argoverse: self driving cars https://www.argoverse.org/data.html
+
* NeurIPS 2022 Traffic4cast competition https://github.com/iarai/NeurIPS2022-traffic4cast
 +
* CitySim https://github.com/ozheng1993/UCF-SST-CitySim-Dataset
 +
* PEMS-BAY / METR-LA liyaguang/DCRNN: Implementation of Diffusion Convolutional Recurrent Neural Network in Tensorflow https://github.com/liyaguang/DCRNN
 +
* NAVER-SEOUL, HyunWookL/PM-MemNet https://github.com/HyunWookL/PM-MemNet
 +
* Uber movement data https://movement.uber.com/?lang=en-CA
 +
* Detector-based traffic data from many countries https://utd19.ethz.ch/index.html
 +
* Trajectories
 +
** BirdsEyeTrajectoryReconstructionSHRP2NDS https://doi.org/10.15787/VTT1/EFYEJR https://github.com/Yiru-Jiao/BirdsEyeTrajectoryReconstructionSHRP2NDS
 +
** TJRD TS: http://tjrdts.linknova.cn (vehicle were tracked through millimeter wave radar sensors installed along the freeways in sequence, and trajectories were spliced)
 +
** Trajnet++ pedestrian trajectory detection benchmark https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
 +
** pNEUMA https://open-traffic.epfl.ch/
 +
** Vehicle-Crowd Intraction (VCI): DUT dataset https://github.com/dongfang-steven-yang/vci-dataset-dut, CITR dataset https://github.com/dongfang-steven-yang/vci-dataset-citr
 +
** Toyota Woven Prediction Dataset https://woven.toyota/en/prediction-dataset/
 +
** highD dataset (and more recent: inD, roundD, uniD, etc): new dataset of naturalistic vehicle trajectories recorded on German highways, using a drone https://www.highd-dataset.com/
 +
** Trajectories from Shanghai intersections https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai
 +
** Zen traffic data (2-km Japanese highway) https://zen-traffic-data.net/english/
 
* Open Data portals
 
* Open Data portals
 
** Montreal: counts, [http://donnees.ville.montreal.qc.ca/dataset/temps-de-parcours-sur-des-segments-routiers-historique Bluetooth travel times (continuous, 2016-2017)], [http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet MTL trajet travel survey with trajectories (2016, 2017)], [http://donnees.ville.montreal.qc.ca/dataset/trajets-individuels-velo-enregistre-mon-resovelo cyclist trajectories (2014)]
 
** Montreal: counts, [http://donnees.ville.montreal.qc.ca/dataset/temps-de-parcours-sur-des-segments-routiers-historique Bluetooth travel times (continuous, 2016-2017)], [http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet MTL trajet travel survey with trajectories (2016, 2017)], [http://donnees.ville.montreal.qc.ca/dataset/trajets-individuels-velo-enregistre-mon-resovelo cyclist trajectories (2014)]
Ligne 8 : Ligne 25 :
 
** includes links to Portland ITS Portal, PeMS in California, etc.
 
** includes links to Portland ITS Portal, PeMS in California, etc.
 
** NGSIM dataset: traffic data for highways and urban corridors taken from multiple cameras on high buildings https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories
 
** NGSIM dataset: traffic data for highways and urban corridors taken from multiple cameras on high buildings https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories
 +
* Mobile century data https://bayen.berkeley.edu/downloads/mobile-century-data
 
* Traffic control data from the US
 
* Traffic control data from the US
 
** Nevada http://challenger.nvfast.org/SPM/
 
** Nevada http://challenger.nvfast.org/SPM/
 
** Utah http://udottraffic.utah.gov/ATSPM/
 
** Utah http://udottraffic.utah.gov/ATSPM/
  
==PolyIT Datasets==
+
==Automated Vehicles==
* Mohamed Gomaa Mohamed's: Guy / Rene Levesque, St Marc
+
* Argoverse https://www.argoverse.org/
* Marilyne Brosseau's: Sherbrooke / Amherst, Sherbrooke / Iberville
+
* Waymo open https://waymo.com/open
* Quebec's roundabouts (to validate) + NYC?
+
* Nuscenes https://www.nuscenes.org
* Pedestrian data: Polytechnique and NYC
+
* Volvo https://developer.volvocars.com/open-datasets/cirrus/
* Cyclistes et discontinuités (matin)
+
* Place Valois
+
* Worker safety (IRSST)
+
* Pedestrian - vehicle interactions (Catherine - INRS)
+
 
+
==Vehicle Datasets==
+
* [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174959 Driver behavior profiling: An investigation with different smartphone sensors and machine learning] https://github.com/jair-jr/driverBehaviorDataset
+
  
 
==Video-related Datasets==
 
==Video-related Datasets==
Ligne 69 : Ligne 80 :
 
* Vision Meets Drones http://aiskyeye.com/
 
* Vision Meets Drones http://aiskyeye.com/
 
* MOTChallenge: The Multiple Object Tracking Benchmark https://motchallenge.net/
 
* MOTChallenge: The Multiple Object Tracking Benchmark https://motchallenge.net/
 +
* AI city challenge: https://www.aicitychallenge.org/ (dataset CityFlow)
 +
* STREETS: A Novel Camera Network Dataset for Traffic Flow https://github.com/corey-snyder/STREETS
 +
* MOT challenge, includes other datasets https://motchallenge.net/
 +
* Event cameras
 +
** MVSEC: The Multi Vehicle Stereo Event Camera Dataset https://daniilidis-group.github.io/mvsec/
 +
** DSEC Dataset: A Stereo Event Camera Dataset for Driving Scenarios https://dsec.ifi.uzh.ch/
 +
* DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios https://drivingstereo-dataset.github.io/
 +
* Sydney group: driving around Sydney campus http://its.acfr.usyd.edu.au/datasets/
 +
* Infrared data: FLIR https://www.flir.quebec/oem/adas/adas-dataset-form/
 +
* Infrared and visual comparison: CAMEL https://camel.ece.gatech.edu/
 +
* MOTSynth (pedestrian videos from GTA V): https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=42
 +
* Mobility Aids http://mobility-aids.informatik.uni-freiburg.de/
 +
* X world, EvalAI (CVPR2022 AVA Accessibility Vision and Autonomy Challenge) https://eval.ai/challenge/1690/overview https://openaccess.thecvf.com/content/ICCV2021/papers/Zhang_X-World_Accessibility_Vision_and_Autonomy_Meet_ICCV_2021_paper.pdf
 +
* UCLA activity dataset https://vcla.stat.ucla.edu/Projects/Multiscale_Activity_Recognition/
 +
* Multi-Object Multi-Actor, The first benchmark and dataset dedicated to activity parsing https://moma.stanford.edu
 +
* LUMPI: The Leibniz University Multi-Perspective Intersection Dataset https://data.uni-hannover.de/dataset/lumpi
 +
 +
==Crash datasets==
 +
* WTS: Woven Traffic Safety Dataset https://woven-visionai.github.io/wts-dataset-homepage/
 +
* CADP: A Novel Dataset for CCTV Traffic Camera based Accident Analysis https://ankitshah009.github.io/accident_forecasting_traffic_camera
 +
* TCP: Traffic Camera Pipeline https://github.com/BerkeleyAutomation/Traffic_Camera_Pipeline
 +
 +
==LIDAR datasets==
 +
Interesting applications https://scholar.google.com/scholar?&q=lidar%20urban%20environment%20parking
 +
* MulRan: Multimodal Range Dataset for Urban Place Recognition https://sites.google.com/view/mulran-pr
 +
* Complex Urban LiDAR Data Set (more robotics?) http://irap.kaist.ac.kr/dataset
  
 
==Driver Simulator/Naturalistic Driving==
 
==Driver Simulator/Naturalistic Driving==
 +
* [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174959 Driver behavior profiling: An investigation with different smartphone sensors and machine learning] https://github.com/jair-jr/driverBehaviorDataset
 
* Real World Driving to Assess Driver Workload https://www.hcilab.org/research/hcilab-driving-dataset/
 
* Real World Driving to Assess Driver Workload https://www.hcilab.org/research/hcilab-driving-dataset/
 
* SIMULATOR STUDY I: A Multimodal Dataset for Various Forms of Distracted Driving https://osf.io/c42cn/
 
* SIMULATOR STUDY I: A Multimodal Dataset for Various Forms of Distracted Driving https://osf.io/c42cn/

Version actuelle en date du 9 juin 2025 à 11:59

PolyIT Datasets, generally not public for privacy reasons.

Traffic Data

Automated Vehicles

Video-related Datasets

Image datasets of known objects are useful to train and test object classifiers

Crash datasets

LIDAR datasets

Interesting applications https://scholar.google.com/scholar?&q=lidar%20urban%20environment%20parking

Driver Simulator/Naturalistic Driving