

Improving Communication Using 3D Animation

Laurent Ruhlmann, Benoit Ozell, Michel Gagnon, Steve Bourgoin, Eric Charton

Ecole Polytechnique de Montréal, 2900 boulevard Edouard-Montpetit, Montréal, QC H3T 1J4,

Canada

{laurent.ruhlmann, benoit.ozell, michel.gagnon, eric.charton

}@polymtl.ca, sbourgoin@unimasoft.com

Abstract. This paper presents a high level view of a project which aims at

improving the communication between people who do not share the same

language by using a 3D animation upper layer to lift the inherent limitations of

written text. We will produce animation using the Collada file format, a

standard based on the XML format. This project (GITAN) has started in

January 2010, and we expect to have the first results by the end of 2010. A

limited set of sentences will validate the global process and help us refine the

tools developed in the pipeline.

Keywords: Animation, Collada, Natural Language Processing, Ontology

1. Introduction

Since Aristotle, human language has been considered a partial way of representing

the human thoughts. "The soul never thinks without a mental image"[1]. With the

development of computer graphics, a new family of tool has emerged to improve

communication. In this paper we present the Gitan Project. This project aims at

creating a new language based on animation sequences in order to swap between text

and graphics. More specifically, the project will develop a grammar linking text and

animation, thus allowing the conversion between them. Such a grammar will allow us

to lift the inherent ambiguity of natural languages. Using the powerful multimedia

capacity of animation, it will be able to move from an abstract representation to a

more concrete graphical view. There are many challenges that this project will face;

one of the most important one is the ability to maintain the number of the existing

animation segments at a reasonable level. Another important challenge is the fact that

we want to combine algorithmically various animations into a plausible solution.

When combining a walk cycle and a translation, in order to represent a walking

person, we must ensure that the duration of the animation and the speed of the walk

represents a good approximation.

mailto:Eric.Charton%7d@polymtl.ca
http://www.groupes.polymtl.ca/gitan/index.php/en.html

2. Related work

Animated scenes have already been used as a good medium to help the

communication between adults and children [2], to illustrate domain specific activities

like car accident simulations [3], or even for storytelling [4]. Another important

project was aimed at the object reuse and the adaptation of 3D data for automatic

scene creation [5]. The major difference between those projects and this one comes

from the application domain and the linguistics approach we are taking. We want to

cover a broader set of words, not limiting ourselves to a specific domain like car

accidents. We want also limit the number of original animations to a minimum. In the

first phase, we will not handle emotions or high level of languages like poetry.

One of the hypotheses of this project is that we will be able to reconcile the text

and the animated image which is distinct types of representations [6]. We believe that

animations will facilitate the understanding of a text, in different languages. Another

hypothesis is that the principle of compositionality [7] is also applicable to

animations. Being able to compose various animations in order to produce a plausible

sequence is key to the project; we have already validated some simple cases. A third

hypothesis is that the computer graphics field is mature and rich enough to be used as

a good communication medium. We are not planning to develop videogame-like

animations, but the realism achieved by some current games gives us some

confidence about the validity of this hypothesis, even if the goal of the project is

communication and not realism; In fact too much realism could limit effective

communications between non-native speakers, since each culture has its own visual

standard for representing emotions or complex actions. A final major hypothesis is

that through proper usage of semantic tools (like ontologies), applied to the

computer graphics domain, we will be able to minimize the amount of objects and

animation to be modeled , in order to produce meaningful animations.

3. The Animation standards

The term animation has been used throughout the ages to define ‘rapid display of a

sequence of images of 2-D or 3-D artwork, in order to create an illusion of

movement’ [8]. It is interesting to note that in 3200 BC, a bowl created with a

sequence of 5 images depicting a jumping goat was found in Iran. Since it is easier to

use a computer, we will limit our definition to 3D artwork generated and displayed by

a computer. In this domain, we will privilege key-frame based animation, since this is

the most common used technique, and realism (which is for instance achieved by

physically based animation) is not our primary goal. In order to be open and readable

by many Digital Content Creation (DCC) software, we will use the Collada

(COLLaborative Design Activity) format, which is emerging as a new exchange

standard [9]. DCC software (3DS Max, Maya, Softimage, 3dvia,) are already

supporting it. Many viewers supporting it are available. It is an XML schema

supporting animations, physics and many other features. It allows extensions which

will be used to define specific information needed by the project. There are a lot of

scripting languages (Maya's MEL, Softimage ICE, Virtools’s SDK, 3ds Max's

Maxscript, Unreal’s Development Kit ...), but they fail to provide a high level

language which will allow the complete description of an animation for our project.

They all have very good scripting capabilities, and are focused on areas which

intersect only partly with our goals. This is why we decided to develop our own

formalism and language.

4. Intermediate format between text and animation.

Going from text to animation is a complex process which cannot be achieved in

one step. We developed an incremental approach, using an intermediate

representation based on the XML schema concept. It is an XML schema [10], since

this formalism provides a clear and easy way to specify the various elements of a

grammar. The file based on this format is split in 2 main parts, the Data and the

Process parts. The Data part contains a detailed description of all the elements needed

in the animation, and the Process part describes how the animation is going to be

played. It can be viewed as a textual animation storyboard [11]. A detailed description

of the parts is given in section 6.1 and specific examples in section 6.8.For a complete

description of the project’s architecture, see figure 1.

5. The need of ontologies

There are many definitions of the term ontology depending on the domain to which

it applies. For our purpose we will use the definition used in the information science:

"An ontology is a specification of a conceptualization." [12]. We will use the

ontologies tools (like OWL, [13]), to abstract meaning from the geometries used in

the animations. This way we will be able to minimize the amount of 3D objects

needed for building the animations. The most interesting project to create and define

semantic based models for digital objects is the AIM@SHAPE project [14]. Due to its

wide spectrum , it has raised a lot of interest among the semantic web community

[15]. This is an avenue where the project may want to invest in the near future, once

the animation ontology is mature enough. We are planning to use an ontology for

static objects in the scene. This way the word 'Boeing', as well as 'Cessna' and

airplane, will be mapped to the same 3D representation of a plane.

6. Architecture of proposed system

This section describes in details how we are going to produce 3D animations which

will carry all the textual information. We give an overview of the architecture and

then detail the 2 modules which will produce the final animation. A description of the

various data needed for the process is also given.

6.1. Architecture components

Our system is based on 3 main components. The Language Engine produces a

semantic form of the text. The Text To Scene Engine converts then this annotated

text in an animatable format: the animatable scene. This is the input to the Graphics

Engine which will produce a Collada file, consumable by any compliant viewer. An

important part of the project is the GITAN Repository, containing partial Collada

files which will be part of the final Collada scene.

GITAN

Wordnet

SUMO

Animation ontology

Collada Splitter

Collada Validator

Animation grammar

Plain text 1

Graphics Engine

III

Text To Scene

Engine

II

Language Engine

I

Collada File

4
Collada File

5

Animatable

Scene3

Semantic form2

Library_animation

Library_geometry

GITAN Repository

Library_material

Figure 1 Gitan’s architecture

6.2. The Gitan Repository

The GITAN repository is the storage containing atomic elements of a Collada file

encapsulated with GITAN specific meta-data. The geometries describe the mesh

structure of the object, plus GITAN tags (specifying whether this geometry static or

animatable is, for instance). The animations follow the Collada animation

specifications [9], and contain also GITAN meta-data (like the origin of the Collada

segment, its expected input for an activity). It contains all the elements to build a

Collada file: cameras, lights,.. It must be noted that we aim to keep this repository as

small as possible, by parametrizing as much as possible all the segments. We must be

able to morph a cat into a tiger, provided the necessary information. The next section

describes how the semantic form of the text is generated.

Figure 2 : The Language Engine

6.3. The Language Engine

The language engine transform a sentence into a semantic representation. Generic

Natural Language Processing methods are used to achieve this transformation. First a

labelling process involving a Part of Speech Tagger is applied. Part of speech helps to

identify nature of textual information like verbs, adjectives and nouns in the

perspective of their animation. Then a Named Entity (NE) labelling step is performed.

This step allow identification of specific entities like Persons, Location, Products.

Then each NE, verb and nouns are linked with an ontological description. This allows

to associate its exact sense with a noun or an entity (i.e. A boat or a building defined

in the ontology with their instance word inside the sentence), a specific movement

with a verb (i.e. the sense of course for the verb Jump in a text context of movement)

or to apply an attribute to a an object (i.e. using adjectives and link their description to

their the concerned ontological instance). The labelling process and algorithms to

instantiate relation between a word and its ontological representation have been

experimented [16]. Final step involve hierarchical representation of terms dependence

and identification of semantics sense inside the sentence (i.e. the cat eats the mouse or

the mouse is eaten by the cat have the same sense but use different relation schema).

This work have been investigated in [17].

6.4. The Text To Scene Engine

This module converts the semantic representation into an animatable description of

the sentence. The major modules are the ones replacing absent entities and converting

events into constraints and activities. The GITAN repository is searched in order to

find an object or an animation fitting the ontological instance of a word. If present, a

tag is created in the file. If absent, the GITAN ontology, using the OWL format [13],

will provide a proper link to a potential candidate: if we want to instantiate a tiger in

the animation for instance, and if the repository contains a cat, this module will morph

the cat into a tiger by scaling it and adding a proper texture to it. The GITAN

ontology provides the various parameters to be modified (i.e. size and texture). The

same principles apply to the ontological instances of events. If the event is absent

from the repository, the ontology will infer a proper parameterized substitute if

possible. A walk cycle can potentially be used as a substitute for a jump cycle. Using

the GITAN grammar, the TTS engine will link and build the tags in the animate text

file. Using constraint calculus [18] , we aim to provide a valid transition for action

verbs, and the global positioning of objects in the scene.

6.5. The Graphics Engine.

Its goal is to assemble the pre-existing objects (defined as Collada segments in the

GITAN repository) into an initial scene and apply the animations to them, according

to the definitions from the Animatable Scene input file The most important parts of

the engine are the constraint converter and the scene builder. The constraint converter

will translate into a Collada format all the constraints and activities found in the

Animated Text file. The scene builder will create the Collada scene, using objects

stored in the GITAN repository. It will also assign the animations to the objects. The

input data used by the graphics engine is made of 2 distinct types: The animatable

scene and the Collada segments. The Collada segments are stored in the GITAN

repository, and are programmatically included in the final Collada file.

Figure 3: the animated scene file

The animated scene file: this input contains a high level scene description, based

on a XML schema. This is a constraint based key-frame set, defining the various

objects needed in the scene, and a set of key-frames, which will trigger animations

and constraints. It is made of 2 sub parts: The data and the process parts. Data

describes all the needed objects, animations, for creating the scene. The process part

gitan

set_nodes

camera ground

light geometry

set_animations

animation

set_constraints

position orientation

attachment color

texture size

scene

node_ref

sequence

keyframe

contraint_ref transition

animation_ref

specifies the timing of the animations and the constraints existing between static

objects. .

The data part contains sets of nodes, animation and constraints. The nodes define

static objects from the GITAN repository. The animations can be a Collada

animation; it defines then a predetermined GITAN animation, stored in the repository.

A good example is a walk cycle, since such an animation is too complex to be

described in a high level animation file. The animation can also be defined as a

displacement. In this case it will be specified in the animated scene file, by its type

(linear, ballistic ...), its speed. This part of the file also contains complete descriptions

of the object’s constraints. We identified 6 major constraint types affecting the

position, the color, the size, the orientation, the texture of an object. There is also an

attachment constraint, defining a link between 2 objects. An animation grammar will

be produced which will convert the annotated verbs into animatable constraints. See

figure 4 for details.

The process part defines how the scene is to be built and what constitutes the

animation. We are using keyframed animation [19], since it's a common standard

among DCC and Collada supports it. It contains 2 main components: the Scene and

the Sequence. The Scene is a static description of the scene to be animated. The

Sequence is made of keyframes and transitions. A keyframe defines the object's static

constraints (positional, color ...) at a certain time. A transition defines how the objects

change (its position, its shape...) from one keyframe to another. A transition must be

made of at least 1 animation, named the major animation. It can also contain

secondary animation. Figure 4 illustrates the link between the various part of the file

and the GITAN repository through a specific example ('the man jumps in the pool').

The <Man> node is linked to the ‘Man’ Collada geometry, and is positioned in the

Keyframe 1. The <Pool> node has the same role. The <walk-activity> links the

‘Walk cycle’ Collada Anim1 to the Transition 1 where it will be executed, like the

Translate Displacement, translating the <Man>. This creates a translation of the

object Man, using a Collada walk cycle. At Keyframe2, the final Man position is set,

through the <Man Position Constraint2>. The < walk-activity> is also linked to the

<man> object, since this Collada animation must be applied to a valid Collada object,

the 'Man Collada Geom1' in this case.

6.6. Development

Since the goal of the project is long term, and there are many areas of research

which could influence its development, we will use a staged approach, based on an

initial prototype working on a limited set of words. This will help validate one our

original hypothesis (regarding the unification of text and image).

Animated text

ProcessData

GITAN repository

Man

pool

Walk-Activity

Translate

Displacement

Keyframe 0 init

scene

Keyframe 1

Keyframe 2

Animation start

Animation end

‘Man’

Collada Geom1

‘Pool’

Collada Geom1

Walk cycle’

Collada Anim1

Empy Collada

Scene

Transition 0

Jump-Activity

Transition 1

Jump cycle’

Collada Anim2

Jump Displacement

Figure 4: the animatable scene file, the GITAN repository

6.7. Initial prototype.

The first prototype will revolve around a specific use case: the teacher types a

simple sentence. An animation is created. The teacher validates the animation,

associated to a bag of word. The student sees the animation, and using the same set of

words assembles them, in order to produce the same animation as the one he saw.

This prototype will validate the Graphics engine, and the GITAN repository access.

For this prototype all words and all the animations representing the verbs will be

available in the GITAN repository;

6.8. Preliminary results

We have validated the principles described by manually annotating all the elements

needed by the Graphics engine. Here is

The original sentence: "John walks and then jumps in the pool"

 The animated text contains the 2 parts data and process :

data

object 1, 'john' , URI = c:\data\models\man.gitan

object2 , 'pool', URI = c:\data\models\pool.gitan

animation-activity1 : 'walk-cycle' , URI=c:\data\animation\biped-

walk.gtn.

animation-activity2 : 'jump-cycle', URI = c:\data\anmation\jump-

cycle.gtn

animation--displacement1: translation, object1 //moves object1 linearly

animation-displacement2: jump, object1 // moves object ballistically

constraint1: 'position1' , object1. // place object1 at position1

constraint2: 'position2', object1. . // place object1 at position2.

constraint3: 'position3', object1. . // place object1 at position3

constraint4: 'position1', object2. . // place object2 at position1

 process

keyframe1: contraint1, constraint4.

transition1 (10 seconds)

 animation-displacement1 (major , 4km/h)

 animation-activity1 (minor, 1 cycle/sec)

keyframe2: constraint2
transition2 (20 seconds)

 animation-displacement2 (major, 6km/h)

 animation-activity2(minor, 1 cycle/sec)

 keyframe3: constraint4

The displacements (jump, translation. etc...) are all predetermined, having specific

parameters. A jump will have the distance and height attribute for instance. The

constraints are of predetermined types: positional, colour, orientation. All those

functionalities will be refined during the progress of the project.

7. Conclusions

With this project we want to liberate the communication between people of the

textual or oral language limitations, by using 3D animations. This paper described the

various modules which are going to be developed, for the graphical part, which will

produce 3D animations. There are open questions that will be solved during the

development of this project: how to maintain automatically the integrity of the

Collada segments in the repository? Is the 'simple animation' (i.e. not realistic like a

video game) paradigm conveying properly the communication intention between 2

persons? Is the proposed keyframe-transition model based on constraint calculus

general enough ? the project starts and promises to be very exciting due to all the

challenges we face. We want to thank Prompt [20] and the UnimaSoft Company [21],

which are funding this project.

8. References

1. Aristotle, De Anima, 431a, 15-20.

2. Kaoru S, Mizue N: Animated Storytelling System via Text in: ACE 06, June

14-16, 2006, Hollywood, California, USA.

3. Dupuy S., Egges A, Legendre V, Nugues P (2001) Generating a 3D

Simulation of a CarAccident From a Written Description in Natural

Language: The CarSim System. In Proc. of the Workshop on Temporal and

Spatial Information Processing, 1-8, ACL 2001 Conference, Toulouse, 7

July.

4. Ma, M: Automatic Conversion of Natural Language to 3D Animation, PhD

thesis, University of Ulster.

5. Bilasco I, Villanova-Oliver M, Gensel J, Martin H : Semantic-based rules

for 3D scene adaptation in Web3D '07: Proceedings of the twelfth

international conference on 3D web technology , April 2007

6. Denis, M. Imagery and thinking. In: C. Comoldi & M.A. McDaniel (eds.),

Imagery and Cognition. New York: Springer-Verlag, 1991.

7. Frege, F. L. G. Über Sinn und Bedeutung. Zeitschrift für Philosophie und

philosophische Kritik, 100 (pp. 22-50). Trad. fr. Claude Imbert, « Sens et

dénotation », in Écrits logiques et philosophiques (pp. 102-126), Paris:

Seuil, 1971.

8. Wikipedia [http://en.wikipedia.org/wiki/Animation]

9. COLLADA [www.collada.org]

10. W3C schema definition page site [http://www.w3.org/standards/xml/schema]

11. Wikipedia [http://en.wikipedia.org/wiki/Storyboard]

12. Tom Gruber [http://tomgruber.org/writing/ontology-definition-2007.htm]

13. OWL [http://www.w3.org/TR/owl2-overview/]

14. AIM@SHAPE [http://www.aimatshape.net/]

15. Linked Data [http://linkeddata.org/]

16. Eric Charton, Michel Gagnon, Benoit Ozell (2010) Extension d’un système

d’étiquetage d’entités nommées en étiqueteur sémantique In Proceedings of

TALN 2010, Montréal, Canada

17. Amal Zouaq, Michel Gagnon and Benoit Ozell (2010): Semantic Analysis

using Dependency-based Grammars and Upper-Level Ontologies, In

Proceedings of the 11th International Conference on Intelligent Text

Processing and Computational Linguistics, 2010.

18. J. Renz, B. Nebel, Qualitative Spatial Reasoning using Constraint Calculi, in:

M. Aiello, I. Pratt-Hartmann, J. van Benthem, eds., Handbook of Spatial

Logics, Springer Verlag, Berlin, 161-215, 2007

19. Foley-Van Dam, computer graphics, Principles and practice, 2nd edition,

Addison-Wesley, 1990

20. PROMPT [http://www.promptinc.org/]

21. UnimaSoft ['http://www.unimasoft.com]

http://portal.acm.org/author_page.cfm?id=81100511956&coll=GUIDE&dl=GUIDE&CFID=80517283&CFTOKEN=73622116
http://portal.acm.org/author_page.cfm?id=81100326385&coll=GUIDE&dl=GUIDE&CFID=80517283&CFTOKEN=73622116
http://portal.acm.org/author_page.cfm?id=81100389775&coll=GUIDE&dl=GUIDE&CFID=80517283&CFTOKEN=73622116
http://portal.acm.org/citation.cfm?id=1229390.1229406&coll=GUIDE&dl=GUIDE&CFID=80517283&CFTOKEN=73622116#_blank
http://portal.acm.org/citation.cfm?id=1229390.1229406&coll=GUIDE&dl=GUIDE&CFID=80517283&CFTOKEN=73622116#_blank
http://www.informatik.uni-freiburg.de/~nebel

