
Matchings and Edge Colourings 
 

Complement to Chapter 5, “The Unhappy Employee” 
and Chapter 9, “The Sudoku Apprentice” 

 
Let’s consider n hockey teams that will be playing against each other in a tournament. 
Let’s suppose that each team needs to play each other team exactly once. We can start by 
asking: what is the maximum number of games that can take place each day, knowing 
that no team can play two games on the same day? 

The answer is simple: if n is even, then n/2 games can take place on the same day; if n is 
odd, then the number is reduced to (n-1)/2, which means that at least one team is not 
playing each day.  

In terms of a graph, we can create one vertex per team and link each pair of vertices with 
an edge. The edges correspond, then, to the games that need to be planned. Our question 
then comes down to asking what is the maximum number of edges we can choose in the 
graph without any two edges chosen having any ends in common. What we’re looking 
for is in fact called a matching with a maximum number of edges. 

Definition 
A “matching” in a graph is a set of edges that have no ends in common. 

We can also ask what the minimum number of days necessary is so that all the games can 
take place. Given that each team plays each other team exactly once, we need to plan  
n(n-1)/2 games.  

 If n is even, we have seen that a maximum of n/2 games can take place each day 
and at least n-1 days are therefore necessary so that all the games can be played. 

 If n is odd, we have seen that a maximum of (n-1)/2 games can take place each 
day, which means that at least n days are needed for all the games to be held. 

As for a graph, this means we want to colour the edges of the graph using as few colours 
as possible, such that each colour represents a matching. In other words, we’re 
associating one colour with each day. 

It is easy to plan all the n(n-1)/2 games in n-1 days when n is even. We can do this as 
follows. We number the vertices from 1 to n to represent the n teams. Let’s draw the 
graph described above, putting the n vertex in the centre and the other vertices in a circle 
around vertex n.  

 On the first day, we organize a game between teams 1 and n, 2 and n-1, 3 and n-2, 
and so forth until the game between n/2 and n/2+1. 

 On the following days, we reproduce what happened the day before, but we 
simply rotate the matchings clockwise. 



Since a picture is worth a thousand words, here is an illustration of this construction for a 
set of n=6 teams. 

 

 

In the case where n is odd, it’s now also easy to plan. We just need to add a non-existent 
team, which we’ll note as n+1. When a team plays against team n+1, that just means the 
team is at rest. So we now have a schedule to build with n+1 even, which requires  
(n+1)-1 days, which is n days. We have seen that we can’t do better. To obtain the 
schedule of games for the n teams, we simply need to remove everything related to the 
non-existent team n+1. 

For example, if the tournament brings together n=5 teams, we add a sixth non-existent 
team and we build the schedule described above. Then we erase everything concerning 
the sixth team to get the following schedule for five days and five teams. 

 

 



Edge matchings and colourings are useful in many other situations too. Let’s suppose, for 
instance, that we need to carry out five tasks, T1, T2, T3, T4 and T5, with each of the tasks 
taking one day to complete. Tasks T1 and T2 must be performed by employee E1, tasks T3 
and T4 by employee E2 and task T5 by employee E3. Tasks T1 and T3 require machine M1, 
tasks T2 and T4 need machine M2 and task T5 machine M3. Knowing that each employee 
can only carry out one task at a time and that each machine can only be used by one 
employee at a time,  

 How many tasks can be performed at maximum in one day?  

 How many days are needed at minimum to perform the five tasks? 

We can of course generalize this problem to any number of tasks, employees and 
machines.  

The two problems can be modelled using a graph. The vertices are employees E1, E2 and 
E3 as well as machines M1, M2 and M3. We link a vertex Ei to a machine Mj if a task 
requires employee Ei and machine Mj. The five tasks in our example are therefore 
represented with five edges. To answer the first question, we need to determine a 
matching with a maximum number of edges in the graph. In our example, the biggest 
matching includes three edges. We can choose [E1,M1], [E2,M2] and [E3,M3], which 
corresponds with tasks T1, T4 and T5. We could also have chosen [E1,M2], [E2,M1] and 
[E3,M3], which would have corresponded with tasks T2, T3 and T5.  

The second problem is equivalent to colouring the edges of this same graph using a 
minimum number of colours, such that the edges that touch one another are of different 
colours. Each colour must correspond to a matching (not necessarily maximum) and 
represent what will be done on a given day. In our example, we need two days to carry 
out the five tasks. For example, we can perform tasks T1, T4 and T5 on the first day (fine 
edges) and tasks T2 and T3 the second day (bold edges).  
 

 
 

Definition 
Colouring the edges of a graph G means assigning colours to the edges such that the 
edges with ends in common are of different colours. We are also generally seeking to 
determine a colouring using as few colours as possible. The smallest number of 
colours needed to colour the edges of a graph G is called the “chromatic index” of G 
and is noted as q(G). 

 
We note (G) for the highest degree of a vertex in G. Given that all the edges touching a 
given vertex must be of different colours, it is clear that the chromatic index q(G) of G 
cannot be less than (G). It is possible, however, that q(G) may be strictly higher than 



(G). For example, the edges of the pentagon below cannot be coloured using fewer than 
three colours, while (G)=2. 

 

In 1964, Vizing demonstrated that the chromatic index q(G) is never much higher than 
the highest degree (G). 
 
Theorem (Vizing) 

 The following inequalities are valid for all graphs G: (G)  q(G)  (G)+1.  
 
Vizing even provided a procedure for determining the colouring of the edges for graph G 
in (G)+1 colours. His algorithm is in error, eventually, by one unit on the chromatic 
index, which is not enormous. It is, however, very difficult to know whether q(G)=(G) 
or (G)+1 when G has no particular properties. 
 
To try and determine q(G), we can for instance determine a first matching with a 
maximum of edges in G, assign a colour to this matching, and remove it from the graph. 
By repeating this process, we will colour all the edges of the graph, and we hope to use as 
few colours as possible, since at every step we are seeking the highest number of edges 
that can all be of the same colour. This way of operating, however, does not always 
colour G in q(G) colours. For example, in the graph below, the biggest matching contains 
three edges: they are the three edges touching the 1-degree vertices. By giving the same 
colour to these three edges, we are still left with the triangle to colour, which requires 
three new colours, since the three edges all have ends in common. The procedure 
described above thus gives a total of four colours, while the chromatic index q(G) is 3, as 
illustrated below with the plain, bold and dotted lines. 
 

 
 

In some cases, it is nevertheless easy to know whether q(G)=(G) or (G)+1. This is the 
case, for instance, in complete graphs where no edges are missing. 
 

Definition 
A graph G is “complete” if there is an edge linking every pair of vertices. 

 

Earlier, we saw that the planning of a tournament for n teams is equivalent to colouring 
the edges of a complete graph with n vertices. We saw that n-1 days would suffice if n is 



even, while we need n days if n is odd. Formally speaking, we saw the following 
property. 
 

Property 
In a complete graph G with n vertices,  

 q(G) = (G) = n-1 if n is even 
 q(G) = (G)+1 = n if n is odd 

 

Another easy case is one in which the vertices of the graph are partitioned into two sets, 
V1 and V2, such that every edge in the graph has exactly one end in V1 and the other in 
V2. 
 

Definition 
A graph G is “bipartite” if there exists a partition (V1, V2) of the vertices such that 
each edge in G has one end in V1 and the other in V2.  
 

The task planning example we saw earlier consists of colouring the edges of a bipartite 
graph. The partition of the vertices is simple: we can place the employees in set V1 and 
the machines in set V2. The edges representing the tasks always link one employee to one 
machine. 
 

Property 
If G is a bipartite graph, then q(G) = (G). 
 

In the graph for the five tasks, which is reproduced here, the highest degree is reached by 
vertices E1, E2, M1 and M2, and it is 2. The chromatic index is therefore 2, which we 
represent using regular and bold lines. 
 

 
Another example 

In a Montréal college, n teachers need to give courses to m classes (groups of 
students). Each edge of the left-hand graph below corresponds to one course to be 
given. Knowing that a teacher cannot give two courses at the same time, and that a 
class cannot take two courses at the same time, how many periods do we need to set 
out in the schedule so that all the courses can be taught? 

This is a colouring problem for the edges of a bipartite graph. The number of periods 
required is then q(G)=(G). In our case, this number is 3, and a three-colour schedule 
is set out on the right with bold, regular and dotted lines. 

 

 



 

Let’s come back for a moment to our quick-on-the-draw man, Inspector Manori. To give 
Cindy back her smile, he does a magic trick for her in which he asks her to place nine 
cards into nine envelopes. Each envelope can only contain one of the cards authorized by 
Manori. The situation is represented using the following bipartite graph, in which we 
need to determine a matching that touches all the vertices. 
 

 
 
By moving the vertices around to avoid edge crossovers, Manori succeeds in providing 
the following representation of the same graph, the bipartition represented this time using 
black and white colourings for the vertices—black for the envelopes and white for the 
cards. 

 
 
Manori shows Cindy that all 9-edge matchings in this graph necessarily contain the edge 
linking vertex VIII to the queen vertex. He shows her two of the matchings. 

 

       
 

Before meeting Cindy, Manori has a big discussion with Despontin during which they 
talk about stable marriages. A set of marriages n between n men and n women is once 



again a matching in a bipartite graph with the men in V1 and the women in V2. Here are 
two examples of the matchings he provides for three men and three women. 

 

 
 

We conclude this chapter with the second Sudoku grid that the young Lei asks Manori to 
fill out. To do so, Manori chooses six specific boxes in the grid and observes that these 
boxes can only contain the numbers 1, 2, 3, 4, 6 and 8. So he builds a bipartite graph with 
the boxes as the first set of vertices, V1, and the available numbers as the second set of 
vertices, V2. He links a vertex from V1 to a vertex from V2 if the number of V2 can be 
placed in the box of V1. He gets the following graph. 
 

 2 A 9    8  
9  B    6  3
1 7 C 8  3    
  5       

7 3 D       
 9 E  8   6  
  F  2 7 1 9 8
         
         

  
 

To fill out the six boxes, we need to determine a matching in the bipartite graph, since 
each box can only contain one of the six numbers, and each number can only go in one of 
the six boxes (as they are all in the same column).  

To get a better view of things, Manori decides to move the vertices around a bit and 
redraw them such that there are no more edge crossovers. He obtains the following new 
representation, in which the boxes of V1 are black and the numbers of V2, to be placed in 
the six boxes, are white. 

 

We can clearly see that this graph is bipartite because there is no edge linking any two 
white vertices or black vertices. The graph is also a planar plane graph because none of 
its edges cross.  

Manori observes that all the six-edge matchings in this bipartite graph necessarily contain 
the edge linking B to 8, which means that we can place the number 8 in the B box.  


