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ABSTRACT

By formulating Maxwell’s equations in perturbation
matched curvilinear coordinates, we have derived the
rigorous perturbation theory (PT) and coupled mode
theory (CMT) expansions that are applicable in the
case of generic non-uniform dielectric profile perturba-
tions in high index-contrast waveguides, including pho-
tonic band gap fibers, 2D and 3D waveguides. PT is
particularly useful in the optimization stage of a com-
ponent design process where fast evaluation of an op-
timized property with changing controlling variables is
crucial. We demonstrate our method by studying radi-
ation scattering due to common geometric variations in
planar 2D photonic crystals waveguides. We conclude
the paper by statistical analysis of experimental images
of 2D planar PCs to characterize common imperfections
in such structures.

Keywords: perturbation theory, coupled mode theory,
planar photonic crystals, imperfections

1. INTRODUCTION

Standard perturbation and coupled mode theory for-
mulations are known to fail or exhibit a very slow con-
vergence1–6 when applied to the analysis of geometri-
cal variations in the structure of high index-contrast
waveguides. In a uniform coupled mode theory frame-
work (waveguide profile remains unchanged along the
direction of propagation), eigenvalues of the matrix of
coupling elements approximate the values of the prop-
agation constants of a uniform waveguide of perturbed
cross-section. When large enough number of modes
are included coupled mode theory, in principle, should
converge to an exact solution for perturbations of any
strength. Perturbation theory is numerically more effi-
cient method than coupled mode theory, but it is mostly
applicable to the analysis of small perturbations. For
stronger perturbations, higher order perturbation cor-
rections must be included converging, in the limit of
higher orders, to an exact solution. In a non-uniform
(waveguide profile is changing along the direction of
propagation) coupled mode and perturbation theories
one propagates the modal coefficients along the length
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of a waveguide using a first order differential equation
involving a matrix of coupling elements. Both uniform
and non-uniform coupled mode and perturbation the-
ory expansions rely on the knowledge of correct cou-
pling elements.

Conventional approach to the evaluation of the cou-
pling elements proceeds by expansion of the solution for
the fields in a perturbed waveguide into the modes of
an unperturbed system, then computes a correction to
the Hamiltonian of a problem due to the perturbation
in question and, finally, computes the required coupling
elements. Unfortunately, this approach encounters dif-
ficulties when applied to the problem of finding per-
turbed electromagnetic modes in the waveguides with
shifted high index-contrast dielectric boundaries. In
particular, for a uniform geometric perturbation of a
fiber profile with abrupt high index-contrast dielectric
interfaces, expansion of the perturbed modes into an in-
creasing number of the modes of an unperturbed system
does not converge to a correct solution when standard
form of the coupling elements7, 8 is used. Mathematical
reasons of such a failure are still not completely under-
stood but probably lie either in the incompleteness of
the basis of eigenmodes of an unperturbed waveguide
in the domain of the eigenmodes of a perturbed waveg-
uide or in the fact that the standard mode orthogonal-
ity conditions (4.1) do not constitute strict norms. We
would like to point out that standard coupled mode the-
ory can still be used even in the problem of finding the
modes of a high index-contrast waveguide with sharp
dielectric interfaces. One can calculate such modes by
using as an expansion basis eigen modes of some refer-
ence waveguide with “smooth” dielectric profile (empty
metallic waveguide, for example). However, the con-
vergence of such a method with respect to the number
of basis modes is slow (linear). Perturbation formula-
tion within this approach is also problematic, and even
for small geometric variations of waveguide profile ma-
trix of coupling element has to be recomputed anew.
Other methods developed to deal with shifting metal-
lic boundaries and dielectric interfaces originate pri-
marily from the works on metallic waveguides and mi-
crowave circuits.9–14 Dealing with non-uniform waveg-
uides, these formulations usually employ an expansion
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basis of the “instantaneous modes”. Such modes have
to be recalculated at each different waveguide cross-
section leading to potentially computationally demand-
ing propagation schemes. When high index waveguide
exhibit only cylindrical features multipole method and
its derivatives could be used to analyze the eigen modes
and scattering in such waveguides,15–19 however these
methods do not allow perturbative formulation. Fi-
nally, time domain codes20 are usually difficult to ap-
ply to analysis of small variation and imperfections as
one has to use meshes fine enough to resolve the imper-
fections, and model large propagation distances over
which the effects of small variations become discern-
able. Similarly, frequency domain and mode matching
methods21–25 require large supercells and fine resolu-
tion to capture the impact of small perturbations.

In this paper we introduce a method of evaluating
the coupling elements which is valid for any smooth
geometrical waveguide profile variations and high in-
dex contrast using the eigen modes of an unperturbed
waveguide (to which we refer as a reference waveguide)
as an expansion basis. This paper presents generaliza-
tion of an earlier method developed to analyze imper-
fections in high index-contrast fibers.1, 30 Main idea of
our method is to introduce a coordinate transformation
that maps a dielectric profile of a reference waveguide
(whose eigen modes are assumed to be known) onto
a dielectric profile of a perturbed waveguide. Such
mappings can be either defined analytically or com-
puted numerically. Transforming Maxwell’s equations
into a curvilinear system where dielectric profile is un-
perturbed we can use the eigen modes of a reference
waveguide as an expansion basis. These modes will be
now coupled due to the curvature of the space, which
is in turn, proportional to the strength of the pertur-
bation in question. Another interpretation of the same
methodology is to use the eigen modes of a reference
waveguide and to stretch them using a coordinate map-
ping in such a way as to make the discontinuities in
their fields to coincide with position of the perturbed
dielectric interfaces, and to finally use such stretched,
perturbation fitted modes as an expansion basis. In
further discussions we formulate geometrical waveg-
uide profile variations in terms of a smooth mapping
of an unperturbed dielectric profile onto a perturbed
one. Given a perturbed dielectric profile ε(x, y, z)
in a Euclidian system of coordinates (x, y, z) (where
z is a general direction of propagation) we define a
mapping (x(q1, q2, s), y(q1, q2, s), z(q1, q2, s)) such that
ε(q1, q2, s) corresponds to a dielectric profile of a refer-
ence waveguide in a curvilinear coordinate system asso-
ciated with (q1, q2, s) (where s is a direction of propa-
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Figure 1. a) Dielectric profile of a reference 2D photonic
crystal waveguide as formed in a square array of dielectric
poles in the air by a linear sequence of somewhat smaller
dielectric poles. b) Linear taper in a photonic crystal with
“unzipping” photonic mirror c) Stochastic variations in a
waveguide core size along the direction of propagation

gation). We then perform a coordinate transformation
from a Euclidian coordinate system (x, y, z) into a cor-
responding curvilinear coordinate system (q1, q2, s) by
rewriting Maxwell’s equations in such a curvilinear co-
ordinate system. Finally, as the dielectric profile in
a coordinate system (q1, q2, s) is that of a reference
waveguide, we can use the basis set of its eigen modes in
(q1, q2, s) coordinates to calculate coupling matrix ele-
ments due to the geometrical variations of a waveguide
profile.

Our paper is organized as following. We first de-
scribe some typical geometrical variations of 2D waveg-
uide profiles. Next, we discuss properties of generic
curvilinear coordinate transformations and formulate
Maxwell’s equations in a curvilinear coordinate sys-
tem. We apply this formulation to develop the coupled
mode and perturbation theories using eigen states of
an unperturbed waveguide as an expansion basis. We
then present analysis of several typical variations in 2D
waveguides. We conclude with statistical analysis of ex-
perimental imperfections from the images of 2D planar
photonic crystals.

2. GEOMETRICAL VARIATIONS OF
WAVEGUIDE PROFILES

We start by considering several common geometrical
variations of waveguide profiles that can be either de-
liberately designed or arise during manufacturing as im-
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Figure 2. Auxiliary functions for the coordinate mapping
of a reference 2D photonic crystal waveguide (Fig. 1a)) onto
a waveguide of a changing core size (Fig. 1c))

perfections. Let (x, y, z) correspond to Euclidian coor-
dinate system. In Fig. 1a) an ideal 2D photonic crystal
waveguide is presented. In what follows the operation
frequency and all the waveguide dimensions are cho-
sen for a reference waveguide to be singlemoded, with
forward and backward propagating fundamental modes
confined by the bandgap of the reflector. In Fig. 1b)
the photonic crystal taper with “unzipping” mirror is
presented. When the core size is increased sufficiently,
the fundamental mode becomes purely guided by the
high index of the remaining corrugated waveguide. In
Fig. 1c) a waveguide with arbitrarily changing core size
along the direction of propagation is presented. When
such variations are small and random one can consider
them to be a model of roughness.

We now define a dielectric profile mapping of a refer-
ence photonic crystal waveguide Fig. 1a) onto a waveg-
uide with a changing core size Fig. 1c) by using the
mapping x = q1 + fx(q1)fz(s), y = q2, z = s, where
auxiliary functions fx(q1) and fz(s) are chosen to be as
on Fig. 2. As seen from this figure, in each of the unit
cells along the waveguide length the functions fx(q1)
and fz(s) are defined in such a way as to translate the
reflector rods along the x direction by an appropriate
value of the core size change, while leaving the smaller
rods of a defect waveguide intact. These auxiliary func-
tions and their first derivatives have to be continuous
everywhere. Although only the variations in the waveg-
uide core size are considered in this paper the CMT
derived in this article is general. For other variations
corresponding coordinate mappings can be computed
analytically or numerically from the original and final

positions of the dielectric interfaces.

3. CURVILINEAR COORDINATE
SYSTEMS

Following,26, 27 we first introduce general properties
of the curvilinear coordinate transformations. Let
(x1, x2, x3) be the coordinates in a Euclidian coordi-
nate system. We introduce a smooth mapping (re-
quiring continuity of the functions and all their par-
tial derivatives in the computation domain) into a
new coordinate system with coordinates (q1, q2, q3) as
(x1(q1, q2, q3), x2(q1, q2, q3), x3(q1, q2, q3)). A new co-
ordinate system can be characterized by its covariant
basis vectors �ai defined in the original Euclidian system
as �ai = (∂x1

∂qi , ∂x2

∂qi , ∂x3

∂qi ). Now, define reciprocal (con-

travariant) vector �ai as �ai = 1√
g�aj × �ak, (k, j) �= i ,

where metric gij is defined as gij = ∂xk

∂qi
∂xk

∂qj ,
and g = det(gij). Vectors �ai and their recip-
rocal �ai satisfy the following orthogonality condi-
tions �ai · �aj = δi,j , �ai · �aj = gij , �ai · �aj = gij ,
where gij is an inverse of the metric gij . In general,
a vector may be represented by its covariant compo-
nents �E = ei�a

i or by its contravariant components
�E = ei�ai. These components might have unusual di-
mensions because the underlying vectors �ai and �ai are
not properly normalized in a Euclidian coordinate sys-
tem. Components having the usual dimensions are
defined by Ei = ei√

gii
, Ei = ei√

gii
and �E = ei�a

i =

Ei
�ii, �E = ei�ai = Ei�ii, where �ii,�i

i are unitary vec-
tors. Normalized covariant and contravariant compo-
nents are connected by Ei = GijE

j , Ei = GijEj where

Gij =
√

gii

gjj
gij , Gij =

√
gii

gjj gij . For orthogonal coor-
dinate systems the metric matrixes are diagonal and
for the regular orthogonal and polar coordinate sys-
tems they are g0xx = 1; g0yy = 1; g0zz = 1; g0 = 1, and
g0ρρ = 1; g0θθ = 1

ρ2 ; g0zz = 1; g0 = ρ2 correspondingly.

4. COUPLED MODE THEORY FOR
MAXWELL’S EQUATIONS IN

CURVILINEAR COORDINATES

In the following, we summarize coupled mode theory for
Maxwell’s equations in curvilinear coordinates to treat
radiation propagation in generic non-uniform waveg-
uides. Hamiltonian formulation of Maxwell’s equations
in regular Euclidian coordinates is detailed in,2, 3, 13

while Hamiltonian formulation and coupled mode the-
ory in curvilinear perturbation matched coordinates for
the case of uniform and non-uniform fibers of arbitrary
cross-sections is detailed in.3, 4, 30, 31
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The form of Maxwell’s equations in curvi-
linear coordinates can be found in a vari-
ety of references.26–29 Assuming the stan-
dard time dependence of the electro-magnetic
fields F(q1, q2, q3, t) = F(q1, q2, q3) exp (−iωt),
(F = ( Eq1√

g11
; Eq2√

g22
; Eq3√

g33
; Hq1√

g11
; Hq2√

g22
; Hq3√

g33
) denotes a

6 component column vector of the electro-magnetic
fields) these expressions are compactly presented in
terms of the normalized covariant components of the
fields, and in the absence of free electric currents they
are:

−iωε(q1, q2, q3)Dij Ej√
gjj

= eijk
∂

Hk√
gkk

∂qj

iωµ(q1, q2, q3)Dij Hj√
gjj

= eijk
∂

Ek√
gkk

∂qj ,

(1)

where Dij =
√

ggij , and eijk is a Levi-Civita symbol.

4.1. Modal orthogonality relations and
normalization

In the following we assume that reference waveguide is
either uniform (planar waveguide, fiber) or strictly pe-
riodic (photonic crystal waveguide, fiber grating) along
the direction of propagation q3 = s. This implies that
both ε0 and µ0 (marking parameters related to refer-
ence waveguide with a subscript zero) either do not
depend on s, or they are periodic functions of s. We
assume that eigen modes and eigen values of a refer-
ence waveguide are found in a coordinate system with
a diagonal (non necessarily unitary) space metric cor-
responding to orthogonal coordinate system. Several
orthogonality relations between the eigen modes of a
reference waveguide are possible.

A norm operator B̂ and its matrix representation13

can be introduced as:

B̂ =




0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0




, (2)

relating the transverse components of the eigen fields.
Depending upon the symmetry of a reference waveguide
several orthogonality relations are possible:

If reference waveguide profile is uniform along s,
then the eigen fields have an additional symmetry
F(q1, q2, s) = Fβ(q1, q2) exp (iβs).
1) If ε0 and µ0 are strictly real we introduce
Dirac notation as |β〉 = Fβ(q1, q2) and 〈β| =

F+
β (q1, q2), and a product operator 〈βi|Ô|βj〉 =∫

cros
dq1dq2F+

βi
(q1, q2)OFβj

(q1, q2), where O is a 6X6
operator matrix, and integration is performed over the
waveguide crossection. Then, for any two eigen modes
labelled by their propagation constants βi, βj the eigen
modes can be normalized as 〈βi|B̂|βj〉 = δβ∗

1 ,βj
ηβj

, and
|ηβj

| = 1.
2) If ε0 or µ0 has a complex part, we introduce Dirac
notation as |β〉 = Fβ(q1, q2) and 〈β| = Fβ(q1, q2),
(no complex conjugation) and a product operator
〈βi|Ô|βj〉 =

∫
cros

dq1dq2FT
βi

(q1, q2)OFβj
(q1, q2), where

integration is performed over the waveguide crossection.
Then for any two eigen modes labelled by their propaga-
tion constants βi, βj the eigen modes can be normalized
as 〈βi|B̂|βj〉 = δβi,βj

ηβj
, and |ηβj

| = 1.

If unperturbed waveguide profile is periodic along
s with period Λ then according to the Bloch-
Floquet theorem the eigen fields still retain a
symmetry F(q1, q2, s) = Fβ(q1, q2, s) exp (iβs), where
Fβ(q1, q2, s) = Fβ(q1, q2, s+Λ). If ε0 and µ0 are strictly
real we introduce Dirac notation as |β〉 = Fβ(q1, q2, s)
and 〈β| = F+

β (q1, q2, s), as well as a product operator
〈βi|Ô|βj〉 =

∫
cell

dq1dq2dsF+
βi

(q1, q2, s)OFβj
(q1, q2, s),

where O is a 6X6 operator matrix and integration
is performed over the whole unit cell of a periodic
waveguide. Then for any two eigen modes labelled
by their propagation constants βi, βj the eigen
modes can be normalized as 〈βi|B̂|βj〉 = δβ∗

1 ,βj
ηβj

,
and |ηβj

| = 1. Moreover, a corollary of Bloch-
Floquet theorem states that the eigen modes at
β and β + 2πl/Λ are equivalent for any integer l,
and thus |β + 2πl/Λ〉 = exp (−2πil/Λz) |β〉. This
implies that it suffices to choose all the eigen values β
in the first Brillouin zone Re(β) ∈ (−π/Λ, π/Λ],
and for such modes definition of the norm
can be furthermore relaxed to be 〈βi|B̂|βj〉 =∫

cell
dq1dq2dsF+

βi
(q1, q2, s)BFβj

(q1, q2, s) =
Λ

∫
cros

dq1dq2F+
βi

(q1, q2, s)BFβj
(q1, q2, s), where

the integral over a reference waveguide crossection
is invariant for any crossection (any s) in the first
Brilloun zone. Thus, the definition of the norm in
the case of real ε0 and µ0 for periodic and uniform
waveguides can be chosen to be the same.

4.2. Expansion basis and coupled mode
theory

We now construct an expansion basis to treat radia-
tion propagation in a perturbed waveguide using the
eigen fields of a reference waveguide in the perturba-
tion matched curvilinear coordinate system. Equiva-
lently, in the Euclidian coordinate system associated
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with a perturbed waveguide we construct an expansion
basis from the eigen fields of an unperturbed waveg-
uide by spatially stretching them in such a way as to
match the regions of discontinuity in their field com-
ponents with the position of the perturbed dielectric
interfaces. Finally, we find expansion coefficients by
satisfying Maxwell’s equations. In the following, we
first define an expansion basis and then demonstrate
how perturbation theory and a coupled mode theory
can be formulated in such a basis.

Let (x, y, z) to define a Euclidian coordinate system
associated with a perturbed waveguide, and (q1, q2, s)
be a coordinate system corresponding to an unper-
turbed waveguide, where s is a direction of propa-
gation, with corresponding smooth coordinate trans-
formation relating the two coordinate systems being
(x(q1, q2, s), y(q1, q2, s), z(q1, q2, s)). Maxwell’s equa-
tions in curvilinear coordinates (1), while seemingly
complicated, involve an unperturbed dielectric profile
ε(q1, q2, s). We look for a solution of Maxwell’s equa-
tions (1) in terms of the basis fields which in (q1, q2, s)
coordinate system are the eigen fields of a reference
waveguide entering with corresponding varying along
the direction of propagation coefficients Cβ(s). Thus,
in the covariant coordinates for both uniform and peri-
odic waveguides we look for a solution in a form:




Eq1 (q1,q2,s)√
gq1q1

Eq2 (q1,q2,s)√
gq2q2

Hq1 (q1,q2,s)√
gq1q1

Hq2 (q1,q2,s)√
gq2q2




=
∑
βj

Cβj (s)




E0
q1 (q1,q2,s)√

g0q1q1

E0
q2 (q1,q2,s)√

g0q2q2

H0
q1 (q1,q2,s)√

g0q1q1

H0
q2 (q1,q2,s)√

g0q2q2




βj

.

(3)
Note, that for a uniform reference waveguide, the ex-
pansion fields are functions of (q1, q2) only, and for both
uniform and periodic reference waveguides basis fields
are stripped of the phase factor exp (iβz). Substitut-
ing expansion (3) into (1), expressing s components of
the fields through the transverse components, using the
orthogonality relations of section 4.1 and manipulat-
ing the resultant expressions we arrive to the following
equations:

B
∂ �C(s)

∂s
= i(BB0 + ∆M(s))�C(s), (4)

where Bβi,βj
= 〈βi|B̂|βj〉 is a constant normalization

matrix, B0 is a diagonal matrix of eigenvalues of an un-
perturbed reference waveguide, and ∆M(s) is a matrix
of coupling elements given in.31

Presented coupled mode theory describes completely
radiation scattering in arbitrary index-contrast waveg-
uides with shifting dielectric boundaries and changing
dielectric profile. Moreover, (4) allows perturbative ex-
pansion. As metric of a slightly perturbed coordinate
system is only slightly different from the metric of an
unperturbed coordinate system that will naturally in-
troduce a small parameter for small geometrical per-
turbations of waveguide profiles. For application of this
theory to analysis of variations in high index-contrast
fibers see.3, 4, 30, 31

5. VARIATIONS IN 2D PHOTONIC
CRYSTAL WAVEGUIDES

In further examples we study propagation of TE po-
larized radiation (electric field is directed out of the xz
plane) in a line defect waveguide made of a periodic
sequence of high index cylinders of radii rg = 0.2a em-
bedded in a square lattice of rx = 0.3a dielectric rods
of the reflector.13 Parameter a defines periodicity of a
photonic crystal waveguide in the direction of propaga-
tion. All the dielectric rods have index n = 3.37. Per-
fectly conducting boundary conditions were imposed in
the x direction ±8a from the waveguide center line. The
frequency ω = 0.25×2πc/a is chosen so that the waveg-
uide formed solely by a sequence of the dielectric rods
of radii rg = 0.2a is guiding and is singlemoded, while
a reference photonic crystal waveguide is also single-
moded guiding in the band gap of the reflector. We use
assymptotically exact CAMFR code to compute an ex-
pansion basis constructed of the guided and evanescent
eigen modes of an unperturbed photonic crystal waveg-
uide defined by the first unit cell in the Fig. 1a). Total
of 4 guided modes with real β′s (where backward and
forward modes with the same absolute values of their
propagation constants are counted ones) and up to 58
evanescent modes with complex propagation constants
were used in the expansion basis to study convergence
of the CMT. Advantage of our coupled mode theory is
the use at all points along the propagation direction of
a single expansion basis precalculated in advance. This
can be of great advantage for computationally demand-
ing simulations of long structures.

5.1. Eigenmodes of a perturbed uniform
waveguide

We first study convergence of a CMT when perturbed
waveguide remains uniform along the direction of prop-
agation ( Fig. 3a)). For such variations, a perturbed
waveguide still exhibits eigen modes labelled by a new
set of propagation constants. Presented in Fig. 3b) is
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Figure 3. (a) Schematics of a reference waveguide (left)
and a perturbed uniform waveguide (right) of a larger core.
Electric energy distributions in the fundamental modes are
presented in the corresponding first unit cells. (b) Conver-
gence of the fundamental mode propagation constant for a
weakly δ = 0.1 and a strongly δ = 1.0 perturbed reference
waveguide in a CMT framework.

convergence of a fundamental mode propagation con-
stant for a weakly δ = 0.1 and a strongly δ = 1.0
perturbed reference waveguide in a CMT framework.
For δ = 0.1 (top plot), inclusion of a single forward
propagating fundamental mode results in errors of only
several percents, suggesting validity of a perturbation
theory regime for a variation of this magnitude. For
δ = 1.0 (bottom plot), variation is large and more than
30 modes are needed to reduce the errors to several per-
cents. In both cases propagation constants calculated
by CMT are compared to the propagation constants
calculated by asymptotically exact CAMFR code.

5.2. Scattering from abrupt variations in a
waveguide core

We next study convergence of the transmitted and re-
flected powers from an abrupt variation in a waveguide
core size. In Fig. 4a) a single cell defect of strength
δ = 1.0 is presented. Scattered powers into the forward
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Figure 4. (a) Schematics of a reference waveguide (left)
and a single cell defect in a reference waveguide (right). (b)
Convergence of the transmitted and reflected powers into
the forward and backward propagating fundamental modes
as calculated by CMT and δ = 1.0 perturbation.

and backward propagating fundamental modes as cal-
culated by CMT are shown in Fig. 4b). For a strong
variation of δ = 1.0, 30 modes are needed for conver-
gence, while convergence is faster than linear when ad-
ditional modes are added. As in the case of the uniform
variations, for small perturbations δ < 0.1 scattering
coefficients can be calculated accurately with only a
few modes using perturbation theory.

5.3. Scattering from tapers

In Fig. 5a) schematic of a taper between a line defect
waveguide in a square lattice of dielectric rods in air and
a waveguide formed by a 1D sequence of dielectric rods
is presented. To the left and to the right of the taper
the photonic crystal is that of a reference waveguide.
Many nuances of transmission of a fundamental mode
through such a taper for TE polarization have been pre-
viously studied in the instantaneous mode framework.13

We believe that method of instantaneous modes can be
more efficient when larger variations (non-adiabatic ta-
pers) are considered, and therefore convergence with a
fixed basis is slow. However, for smaller variations (adi-
abatic tapers) convergence with a fixed basis is efficient,
while it becomes costly to re-compute instantaneous ex-
pansion basis at different crossections, thus rendering a
method employing fixed basis to be more efficient than
a method employing instantaneous modes (for detailed
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Figure 5. (a) Taper of an “unzipping” reflector around an
index guiding waveguide. To the left and to the right of the
taper the photonic crystal waveguide is infinite and is de-
scribed by the first unit cell of the schematic. (b) Reflected
power from the taper at ω = 0.25 × 2πc/a as a function of
taper length L. Observe a 1/L2 decrease of the reflected
power with taper length.

discussion see9).

Here we investigate the magnitude of the back scat-
tering into the backward propagating fundamental
mode as a function of the taper length. In Fig. 5b)
we plot the reflected power from the “unzipping” taper
of strength δ = 0.25 at ω = 0.25×2πc/a as a function of
the taper length L. Expected 1/L2 decrease of the re-
flected power for the large taper lengths 20 < L < 100
is clearly observed. It was found that 16 expansion
modes were enough to reduce the error in the scatter-
ing coefficients below 2%.

5.4. Scattering from random variations in a
waveguide core size

We now calculate the strength of back scattering from
small stochastic variations in a waveguide core size.
Computational domain is defined by taking a reference
waveguide and changing the waveguide core size (shift-
ing the lower and upper reflector parts) in each unit
cell i by 2aδi, where 2a is a core size of a reference
waveguide (Fig. 6a)). Random variable δi is considered
to be distributed according to the gaussian distribution
with variance δ. For each δ = 0.0025, 0.005, 0.01, 0.02
and ω = 0.25 × 2πc/a, back reflected power from a
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Figure 6. (a) Schematic of a computational domain to
study back scattering losses due to waveguide core size vari-
ations. Variations in the core size are assumed to be un-
correlated from one unit cell to another, and distributed ac-
cording to the gaussian distribution with variance δ. (b) For
each δ, back reflected power from a waveguide with “rough-
ness” is presented as a function of propagation distance L.
Each δ curve represents an average over 30 realizations of
“roughness”.
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Figure 7. Designing dielectric profile to negate the effects
of variations in a waveguide geometry. Presented is an unde-
sired taper of strength δ = −0.25 over the length of 20 unit
cells. Square mesh corresponds to the non-overlapping re-
gions where dielectric is modified, thus modelling finite res-
olution and positioning accuracy of the index changing tool.
Values of dielectric constant in various square regions were
chosen to make the propagation constant of a perturbed
waveguide to match closely the propagation constant of an
unperturbed reference waveguide along the whole length of
a taper. Only the material of high refractive index is mod-
ified εmodified

high = (1 + α(x, z))εhigh. Required change in the
dielectric constant α(x, z) is presented in shades. In gen-
eral, we observe that α ∼ δ, consistent with predictions of
perturbation theory.

waveguide with stochastic core size variations is pre-
sented as a function of propagation distance L. Each
δ curve represents an average over 30 realizations of
stochastic variations (Fig. 6b)). First, we observe that
power in the back scattered fundamental mode scales
linearly with the length of propagation L, defining av-
erage scattering losses of 9.4·10−5dB/a, 2.6·10−4dB/a,
1.3·10−3dB/a and 4.6·10−3dB/a for the corresponding
δ’s. One also observes δ2 scaling of losses with pertur-
bation strength. It was found that 6 expansion modes
were enough to reduce the errors in the scattering co-
efficients below 1% for all δ’s.

5.5. Compensation of geometrical
variations by changing dielectric profile

Finally, we demonstrate how PT expansions can be
useful to design dielectric profiles that compensate for
the undesired weak variations in a waveguide geome-
try. One way of changing the dielectric constant of an
underlying material could be via an interaction with
femtosecond laser radiation. Material interaction with
femtosecond radiation is currently actively investigated

for writing bulk and planar waveguides in various mate-
rials. With such a process index change is proportional
to the exposure time to the radiation, while spatial res-
olution λres is determined by the laser spot size in fo-
cus. Thus, given the spatial resolution (“spot size”) of
the focused laser beam and positioning resolution of a
setup we investigate at what spatial points and with
what intensities laser beam has to be applied to reduce
the effects of undesired variations.

Particularly, in the case of a weak slow variation (ta-
per, for example), local propagation constant of a fun-
damental mode β(z) at a point z along the waveguide
can be approximated by the first order perturbation
correction β(z) = β0 + 〈β0|∆Mβ0,β0(z)|β0〉 / 〈β0|B̂|β0〉,
where β0 corresponds to the fundamental mode of a ref-
erence waveguide, while ∆Mβ0,β0(z) and B̂ are defined
in section 4. As matrix of coupling elements Mβ0,β0(z)
depends simultaneously on the geometry of variation
and underlying dielectric profile, by modifying such a
dielectric profile one can, in principle, compensate for
the effects of undesired variations in waveguide geom-
etry. To construct optimization problem we can define
an objective function as follows:

Q =
∫ L

0

dz|β(z)−β0|2 =
∫ L

0

dz| 〈β0|∆Mβ0,β0(z, ε)|β0〉
〈β0|B̂|β0〉

|2.
(5)

By minimizing the objective function Q via changing
the dielectric profile we force the local propagation con-
stant to be that of an unperturbed reference waveg-
uide, thus negating the effect of an undesired taper.
We introduce possible changes in the dielectric pro-
file as ε = ε0 +

∑
i ciφ(x − xi, z − zi), where ε0 cor-

responds to the dielectric profile of a reference waveg-
uide, while spot function φ(x − xi, z − zi) is a local-
ized function defining intensity distribution of a laser
spot focused at a point (xi, zi). For a set of the fo-
cusing points (xi, zi) defined by the positioning reso-
lution of the device, unknown coefficients ci are then
chosen to minimize the value of the objective function
Q. In general, such formulation leads to a nonlinear
optimization problem that can be approached by a va-
riety of well established numerical methods. Finally,
modified dielectric profile is reconstructed using opti-
mal ci’s, and success of optimization is judged by the
ratio of Qoptimal/Qun−optimized.

In Fig. 7 we present the results of optimization of the
dielectric profile to negate the effects of an undesired ta-
per of strength δ = −0.25 over the length of L = 20 unit
cells. Waveguide on the left of the taper is assumed to
be infinite and described by the leftmost unit cell of the
taper. Spot function φ(x − xi, z − zi) is chosen to be
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unity defined on a square of size λres = 2a. It is also
assumed that only the high index dielectric can be mod-
ified εmodified

high = (1+α(x, z))εhigh. Focus points (xi, zi)
were chosen to create a square mesh of non-overlapping
laser spots. Intensities in various spots were optimized
to reduce an objective function (5). With such chosen
realistic spot size and positioning scheme we managed
to reduce an objective function by a factor of 10. In
Fig. 7 we plot in shades the required change in the high
index dielectric in each of the focusing points. As ex-
pected, the largest change in the dielectric profile hap-
pens in the region of the largest geometric variation. As
a rule, for slow weak variations we find that the absolute
change α in the dielectric profile needed to compensate
for the geometric variation, and an absolute strength of
such a geometric variation δ are proportional to each
other α ∼ δ, which is consistent with predictions of
perturbation theory.

6. STATISTICAL MODEL OF
GEOMETRICAL IMPERFECTIONS

FROM THE IMAGES OF 2D
PHOTONIC CRYSTALS.

Manufacturing imperfections and tight tolerances in
photonic crystals (PC) structures present great chal-
lenge on the road of transferring this revolutionary
technology into the domain of commercial applications.
Much work has been done to study an impact of imper-
fections on the performance of PCs. It was established
quite generally that small degree of randomness in PC
geometry and/or material constants leads to an over-
all reduction of a band gap size as well as an increased
back scattering and radiation loss, while stronger ran-
domness can lead to an appearance of localized im-
purity states. In the majority of theoretical studies
various simplified models of randomness are assumed.
Such models are frequently motivated by simplicity of
parametrization of a particular type of randomness, or
by the limitations of a modelling software, rather than
by the presence of such perturbations in the experimen-
tally implemented structures. In 1D PC multilayers
one typically considers disorder in the thickness and
value of a dielectric constant of individual layers. In
2D planar PCs and microstructured fibers one typically
considers random displacement of features from an un-
derlying ideal lattice, disorder in a feature size (radius
of a hole, for example), refractive index disorder, dis-
tortion of features (ellipticity), as well as roughness of
walls which are modelled as protrusions of some aver-
age characteristic hight and width. In 3D PCs derived
from lithographical techniques and opals one typically
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Figure 8. (a) Image of a hole together with a detected edge
(b) Shape of a rugged edge is fitted with Fourier series in θ.
Smooth curve is a fit with Nm = 5.

considers variation of layer thicknesses, variation in fea-
ture size, misalignment of individual features, stacking
faults, and surface roughness. In these calculations dis-
order parameters are scanned from small to large and
conclusions are drawn as to the effects of such a disor-
der. Propagation parameters can be sensitive functions
of a disorder parameter. For example, intensity of back
scattering from the wall roughness, and thus, propaga-
tion loss, in a planar TIR waveguide scales quadrati-
cally with roughness hight (from perturbation theory
argument) and is a very sensitive function of a rough-
ness correlation length. Thus, for a realistic comparison
of theoretical estimates with experimental observations
one has to be precise about statistical distribution of
such a parameter. The goal of this section is to de-
rive statistical properties of imperfections in 2D planar
slab PCs from high resolution experimental images33 to
provide a realistic input to theoretical models.

6.1. Fitting shape of an individual feature
First, object recognition algorithm is used to extract
circular features and their edges Fig. 8(a). We start
with high resolution (0.46nm, 0.86nm) images having
few features. Edge of each hole is then fitted to ex-
tract coordinates of its center, radius, ellipticity and
the higher order Fourier components in the edge shape
Fig. 8(b). Particularly, we define an edge objective
function

Qedge =
1

Nedge

Nedge∑
i=1

(rfit(θi) − redge(θi))2, (6)

where redge(θi) is a distance from a hole center (X0, Y0)
to an edge point (Xi, Yi), and

rfit(θi) = R0 +
Nm∑
m=2

(AmSin(θi) + BmCos(θi)). (7)
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Figure 9. (a)Probability density distribution of a mismatch
of a hole edge from a fitted smooth curve for a different num-
ber of angular momenta Nm in a fit. (b) Variance of a fit
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m as the number of angular
momenta in a fit increases, suggesting that imperfections in
circular features of 2D photonic crystals can not be charac-
terized solely in terms of ellipticity.

Note that m = 0 term in (7) corresponds to the hole
radius, m = 1 terms are accounted by the hole cen-
ter coordinates (X0, Y0), while m = 2 expansion co-
efficients define hole ellipticity. For a given Nm there
are (1 + 2Nm) fit parameters. We fit these parame-
ters by minimizing an objective function (finding ze-
ros of its derivatives) using multidimensional Newton
method, where

√
Qedge characterizes the data variance

around the fit.

6.2. Distribution of parameters defining a
feature shape

If several holes are present the data is averaged over all
features.

In Fig. 9(a) we present probability density distri-
bution (PDD) of a random variable δr = (rfit(θi) −
redge(θi)) when different numbers of angular momenta
components Nm are included in the fit. We observe that
image data (solid curves) and fitted Gaussian distribu-
tion (dotted curves) match well indicating that error
of a fit is indeed Gaussian distributed. As the number
of variables in a fit increases variance of δr becomes
smaller Fig.9(b). We observe a slow power law decay
of variance with the number of angular momenta com-
ponents (from which fractal dimension of the roughness
can be inferred), suggesting that imperfections in circu-
lar features can not be characterized solely in terms of
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Figure 10. (a)2D photonic crystal lattice of holes with 2
missing rows (a waveguide) is analyzed. Edges of the holes
are detected and a perfectly periodic underlying lattice is
fitted to have its vertices (dots) closely matched with the
hole centers (not shown). (b)2D PDD of the hole center de-
viations from the vertices of a perfect lattice. PDDs along 2
principal directions are shown: perpendicular to the waveg-
uide σ1, and parallel to the waveguide σ2. Data distribu-
tions (solid lines) are fitted well with Gaussian profiles (dot-
ted lines). Hole center deviations from an underlying lattice
are highly anisotropic apparently because of the presence of
a waveguide.

ellipticity (which is frequently assumed in simulations),
and that higher order angular components contribute
considerably. High resolution image analyzed in Fig. 9
contained 11 holes. Averaged over the features we find
that R0 = 124.3 ± 1.8nm, while ellipticity amplitude
(7)

√
A2

2 + B2
2 = 2.7 ± 1.2nm was found to be almost

the same for any Nm > 2 used in the fit.

6.3. Displacement of features from their
lattice positions

Next, lower resolution (5.54nm) images containing a
large number of features (437 holes) were analyzed to
determine distribution of deviations of the hole centers
from an underlying perfect lattice Fig. 10(a). At first,
coordinates of the hole centers r̄i

0 = (Xi
0, Y

i
0 ) were found

by minimizing objective function (7) for various Nm.
It was later found that statistics of deviations of the
hole centers from an underlying perfect lattice is not
sensitive to a particular choice of Nm. Parameters of
an underlying perfect lattice were found by minimizing
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a lattice objective function

Qlat =
1

Nholes

Nholes∑
i

(r̄i
0 − ni

1ā1 − ni
2ā2)2, (8)

where ā1,2 are the basis vectors of an underlying per-
fect lattice, and ni

1,2 are the integer lattice coordinates
of a hole center i. It is relatively straightforward to find
2Nholes integer coordinates in (8) leaving 4 real param-
eters to fit. As before, we performed a fit with multi-
dimensional Newton method. In Fig. 10(a) we present
the edges of the holes together with the vertices of an
underlying perfect lattice (dots). We now define a 2D
random variable δ̄c = r̄i

0−ni
1ā1−ni

2ā2 which we assume
to be 2D Gaussian distributed with PDD

ρ =
1

2πσ1σ2
exp(−

(
δx
c

δy
c

)T

RT

(
1

2σ2
1

0
0 1

2σ2
2

)
R

(
δx
c

δy
c

)
),

(9)

where R =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
is a 2D rotation ma-

trix, and σ1,2 are the variances along the two princi-
ple directions. Using the averages for a 2D Gaussian
random variable, < δx

c δx
c >= σ2

1cos2(θ) + σ2
2sin2(θ),

< δy
c δy

c >= σ2
1sin2(θ) + σ2

2cos2(θ), < δx
c δy

c >=
2cos(θ)sin(θ)(σ2

1 − σ2
2) we deduce the distribution pa-

rameters σ1,2, θ. In Fig. 10(b) we plot PDD of δ̄c along
the two principle directions (θ = −1.6o) from the lat-
tice fit (solid lines) and a corresponding Gaussian dis-
tribution (dotted lines). We find that a 2D distribution
of feature center displacements from the vertices of an
underlying perfect lattice indeed appears to be Gaus-
sian and is highly anisotropic as a symmetry break-
ing feature (waveguide) is present. The variance of the
hole center deviations from a perfect lattice is twice as
large σ1 = 6.4nm in the direction perpendicular to the
waveguide than in the parallel direction σ2 = 2.9nm.

7. CONCLUSION

In this work, we presented a general form of the cou-
pled mode and perturbation theories to treat geometric
variations of generic waveguide profiles with an arbi-
trary dielectric index contrast. Applications to various
aspects of light propagation in deformed 2D photonic
crystal waveguides were demonstrated. We conclude
that semi-analytical CMT and PT can offer substantial
computational advantages over time domain and fre-
quency domain methods when analyzing the impacts of
small imperfections or weak variations over large prop-
agation distances. Together with input from statistical
analysis of experimental images of planar 2D photonic

crystals we believe that we now have a robust computa-
tional method and realistic model of roughness to make
a direct comparison between simulations and measure-
ments.
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Marin Soljačić, Steven A. Jacobs, and Yoel Fink,
“Analysis of general geometric scaling perturbations
in a transmitting waveguide: fundamental con-
nection between polarization-mode dispersion and
group-velocity dispersion,” J. Opt. Soc. Am. B 19,
(2002).

4. M. Skorobogatiy, Steven A. Jacobs, Steven G. John-
son, and Yoel Fink, “Dielectric profile variations in
high index-contrast waveguides, coupled mode the-
ory and perturbation expansions,” Phys. Rev. E 67
,46613 (2003).

5. M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geom-
etry tolerance estimation for rectangular dielectric
waveguide devices by means of perturbation theory,”
Opt. Communications 163, pp. 86–94 (1999).

6. N. R. Hill,“Integral-equation perturbative approach
to optical scattering from rough surfaces,” Phys. Rev.
B 24, p. 7112 (1981).

7. D. Marcuse, Theory of dielectric optical waveguides
(Academic Press, 2nd ed., 1991).

8. A. W. Snyder and J. D. Love, Optical waveguide the-
ory (Chapman and Hall, London, 1983).

9. B. Z. Katsenelenbaum, L. Mercader del Ŕıo,
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