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All-polymeric photonic bandgap
polystyrene/polymethyl
methacrylate Bragg fibers
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Maksim Skorobogatiy

A novel and efficient method of making waveguides based on alternat-
ing polymer layers promises better control of the fabrication process

and fewer defects.

As materials for waveguide fabrication, polymers offer several advant-
ages over glass, including low cost, low processing temperatures, and
compatible combinations. In particular, polymeric photonic crystal
waveguides have been used in a variety of applications, such as data
communication,! 3 light ampliﬁcation,4 and sensing.5‘7 Unlike conve-
ntional glass waveguides, which are based on the principle of total
internal reflection, in photonic crystal waveguides the wave path is
controlled by periodic spatial modification of the refractive index. The
repeating pattern forces the wave to scatter and interfere in a way
that restricts its propagation only to certain directions and at certain
frequencies.® One-dimensional photonic crystals consist of multilayer
films. The transmission intensity through such films depends on the
periodicity of the stack and on its refractive index contrast. Some fre-
quencies are strongly reflected and have almost no transmission: see
Figure 1(a)®. This range of frequencies is called a photonic bandgap.
If the multilayer film is rolled into a tube, the frequencies comprised
by the photonic bandgap will be confined to the fiber core and
will propagate along its length: see Figure 1(b)®. This is the basic
principle of multilayer Bragg fibers, which have recently been
used in color-changing textiles’ and in high-bandwidth, short-range
telecommunications.’

Bragg fibers are produced by drawing macroscopic preforms in a
drawing tower to decrease their diameter by a factor of 50-100. There
are two ways to produce Bragg fiber preforms.'® The first uses
deposition of alternating layers of two different polymers on the
inside of a rotating polymer cladding tube by solvent evaporation.
Preforms comprising ~30 layers can be obtained. This method is
time-consuming due to the solvent evaporation step, and requires the
selection of two orthogonal solvents that do not cross-solve the polymer
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Figure 1. Wave propagation through (a) a multilayer film and (b) a
photonic bandgap Bragg fiber® A: Wavelength.
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Figure 2. Microstructure of a Bragg fiber of external diameter
500um. (a) Low magnification. (b) First 15 alternating layers at high
magnification."! PS: Polystyrene. PMMA: Polymethyl methacrylate.

during deposition. An alternative approach is that of co-rolling, which
consists of rolling two different polymer films around a plastic mandrel.
This method allows fabrication of preforms containing ~100 individual
layers. However, this technique leads to trapping of microvoids inside
the multilayer structure. Such defects strongly affect the optical prop-
erties of the fibers, especially when they are located within the layers
closest to the fiber core.

We describe in detail elsewhere a novel method of preparing multi-
layer preforms.'! To minimize the formation of microvoids, we chose
to roll a single multilayer film around the mandrel rather than co-
rolling two monolayer films. We used polystyrene (PS) and polymethyl
methacrylate (PMMA) to produce a four-layer PS/PMMA film by
co-extrusion. This multilayer PS/PMMA film was then rolled around

a PMMA mandrel. The resulting preform was drawn in the draw tower.
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Figure 3. Transmission spectra of two PS/PMMA Bragg fibers of

different diameters.!!

To vary the spectral position of the photonic bandgap, we used various
drawing velocities, and obtained Bragg fibers with external diameters
ranging from 300 to 500um. Scanning electron microscopy shows
that those fibers consist of ~150 layers with a uniform thickness of
500-550nm (see Figure 2).

Figure 3 shows the transmission spectra of the Bragg fibers in the
visible region as a function of their diameter. The transmission range
is 475-625nm (green to yellow) for fibers of diameter 400um, and
500-725nm (yellow to red) for fibers of diameter 500m. This result
confirms that the transmission properties of the Bragg fibers can easily
be modified by controlling the drawing ratio, and thereby the thickness
of the alternating PS/PMMA layers.

In summary, we produced solid-core PS/PMMA Bragg fibers ac-
cording to a new process in which a multilayer co-extruded film was
rolled around a PMMA mandrel to make a preform that was subse-
quently drawn into a fiber. Compared to classical processes, this new
method makes it possible to significantly reduce the number of defects
that can occur during fabrication and to accurately control the thickness
and uniformity of the alternating layers. In addition, many layers can
be achieved within a reasonable amount of time. The resulting Bragg
fibers were shown to guide specific wavelengths in the visible range de-
pending on their diameter. Next steps will aim at enhancing the control
of fiber diameter and at expanding the co-rolling technology to other

polymeric systems.

The authors are grateful to Total Petrochemicals and Arkema, which

generously donated the polymeric materials used in this project.
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