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Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions
in photonic crystals
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We prove that an adiabatic theorem generally holds for slow tapers in photonic crystals and other strongly
grated waveguides with arbitrary index modulation, exactly as in conventional waveguides. This provides a
guaranteed pathway to efficient and broad-bandwidth couplers with, e.g., uniform waveguides. We show that
adiabatic transmission can only occur, however, if the operating mode is propagatimgvanescehiand
guided at every point in the taper. Moreover, we demonstrate how straightforward taper designs in photonic
crystals can violate these conditions, but that adiabaticity is restored by simple design principles involving only
the independent band structures of the intermediate gratings. For these and other analyses, we develop a
generalization of the standard coupled-mode theory to handle arbitrary nonuniform gratings via an instanta-
neous Bloch-mode basis, yielding a continuous set of differential equations for the basis coefficients. We show
how one can thereby compute semianalytical reflection and transmission through crystal tapers of almost any
length, using only a single pair of modes in the unit cells of uniform gratings. Unlike other numerical methods,
our technique becomeanore accurate as the taper becomes more gradual, with no significant increase in the
computation time or memory. We also include numerical examples comparing to a well-established scattering-
matrix method in two dimensions.
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I. INTRODUCTION (i) The operating mode mube guided(i.e., not part of a
continuum for every intermediate point of the tap€Or, if

Waveguides with strong “gratings,” i.e., large axial index leaky, the leakage rate should be slow compared to the taper.
modulation, are increasingly important components of opti-
cal devices, from filters to distributed-feedback lasers—theyn fact, both of these common-sense criteria hold for tapers
especially arise in the context of photonic crystals, periodicof nongrated waveguides as well: no one would expect high
dielectric structures with a band gap that forbids propagatioff@nsmission if a conventional waveguide were tapered to be
of light for a range of frequencies along sorfpessibly al) ~ narrower .than the cutoff for gl_J|d|ng and then tapered back.
directions[1]. Such waveguides can exhibit high transmis- | € conditions take on a new importance, however, for pho-

sion around sharp bendg] or through wide-angle splitters tonic crystals and strong gratings, because here the most

[3], form a robust substrate for interacting with resonators obvious® taper designs can inadvertently violate them. We

and filters[4], may have dramatically slow group velocities demonstrate how this occurs in an example two-dimensional

and anomalous dispersion, and can greatly amplify nonlineay SteM: and how adiabaticity can be restored by simple

phenomend5,6]. In all such applications, however, one modifications(varying.the peripd andfor “unzipping® thg
guestion that arises is how to couple them efficiently withcryStab based on an inexpensive band-structure analysis of

conventionalnongrateglwaveguides; this is especially chal- uniform gratings at intermediate points in the taper.

: : ; Furthermore, in order to prove the adiabatic theorem, we
lenging for slow-light waveguidegear band edges or from T '
coupled resonatoli]) due to their large “impedance” mis- develop a generalization of coupled-mode the[@yl5] to

match. In this paper, we prove that, as for conventionaf".rbitrary.grated. wavegu!des, yielding acqqtinuous §et of or-
waveguides[8], an adiabatic theoreménsures that suffi- dinary differential equations for th_e c_oefflments of “instan-

ciently slow transitions(tapered, or “apodized,” gratings taneous Bloch mode_s at e_ach point in a taper. Thes_e equa-
produce arbitrarily good transmission between grated an ons enable the semianalytical computation of reflection and

nongrated waveguides. Although the general concept of slo trantsmrlssml:nthtrroug\r; gtr;:\tlrn%tagerrﬁ T10ttr“rpltid\;\? |nde>r< (t:onr_
transitions in grated waveguides has been previously imple-"""3 or geomelry. Ve thereby demonstraté how accurate re-

mented on a trial-and-error ba§B-14], the existence of the sults are obtained by combining independent calculations for
adiabatic limit was unproven. We f'ind that this theorem the unit cells of intermediate points in a taper, with the basis

moreover, imposes two requirements on the taper that leat efficient th_at typically only a single pgir of eigenstate; are
directly toy design principles required. Unlike other numerical techniques such as finite-

difference time-domain method46] or transfer/scattering
(i) The operating mode musbt be evanescefitannot lie  matrices[17-21], these coupled-mode equations can yield
in a band gapfor any intermediate point of the taper. the transmission for many taper rates simultaneously with
essentially no additional computational effort. In fact, our
method becomemore accurateland no more expensiyas
*Electronic address: stevenj@alum.mit.edu the taper becomes more gradual, rather than requiring ever-
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increasing spatial resolution and computational power. the eigenmodes of fixed waveguide or gratingj15], which
Coupled-mode theory generally involves expanding thds useful to handle small deviations from an ideal waveguide,
electromagnetic fields in some basis, typically the eigenbut not for transitions between greatly differing waveguides.
modes of a waveguide, and then solving for the basis coeffhe Bloch modes of a grating can then be straightforwardly
ficients as a function of position. There exist many variationsemployed, and this has been used to study, e.g., nonlinear
on this theme, but they can broadly be divided according td®erturbations in periodic waveguidg29]. N
the expansion basis and the method of solving for the coef- [N the following, we begin by introducing a Hermitian
ficients.(We do not consider coupled-mode theories for cou-£igénproblem formulation of the fully vectorial Maxwell's
pling parallel waveguides, which have a special set of con-€duations for propagation of definite-frequency states, pro-
cerns such as nonorthogonalf82].) The classic expansion viding an abstract algebra_uc framework _that greatly _S|mpl|f|es
basis at each point is that of the “instantaneous” eigenmodel'® Problem, and we point out some important differences
(or quasimodesof an infinite straight/uniform waveguide Compared to, e.g., quantum mechanics. Second, we review
matching the cross section at that point. If the cross section i§'¢ derivation of standard coupled-mode theory for non-
a continuously varying quantity, this yields a set of coupleddrated waveguides in this framework. Section IV then gen-
differential equations for the mode coefficients, where thefr@lizes this treatment to arbitrary grated waveguides, even-
coupling is due only to the rate ehangeof the cross section tually arriving at coupled-mode equations that are of almqst
[8,15—thus, they efficiently express the low scattering that€*actly the same form as the familar result—thus, the adia-
occurs in slowly changing structures. In the presence of Qatic theorem immediately followgthe proof is identical
grating, these equations are most commonly solved usin Iso dlsc;ussed. are important conS|derat|oqs in practlcgl
only the fundamental Fourier component of the index modu£omputations with these coupled-mode equations. Finally, in
lation, which is valid only in the limit of weak gratings S€C: V we illustrate the theory by comparing it to an “exact
[8,23—23, but a more complete basis can also be emmoye&catte_rmg-matrlx methpd in two _dlmen_5|o_ns, and in Sec._VI
at a greater computational expeng® one dimension, an de;crlbg pltfall_s_ and simple design criteria for ponstructmg
exact theory can be formulated by forcing an equivalence t@diabatic transitions. There are also two appendixes, one out-
the analytical transfer matricd@6].) Alternatively, if the  !Ining a proof of the adiabatic theorem and highlighting the

cross section is piecewise-constant, one obtains a scatteringf9in Of the conditions it imposes, and the other discussing
matrix or transfer-matrix method as referenced above, alsfinPortant phase choices that arise in the Bloch basiana-
called rigorous coupled-wave analysis, mode matching, an?9 t© Berry's phas¢30,31 from quantum mechanigs

so on; there, the mode coefficients change discontinuously at

a discrete set of points where the boundary conditions are Il. WAVEGUIDES AND DIRAC NOTATION

matched. All such instantaneous eigenmode techniques,

however, suffer in efficiency when faced with a strong grat- [N this paper, we employ the Dirac notation of abstract
ing: the mode coefficients change rapidly with the cross sedinear operatorsA and state ket$y) [32,33 to cast Max-
tion, so a large basis is required even for a periodic gratingvell's equations at a fixed frequenayas a Hermitian eigen-
where, in principle, there is no scattering. A more naturalsystem in explicit analogy with quantum mechar(with the
basis for strong gratings is that of the Bloch modé$ spatial propagation directiontaking the place of). Here,
which have constant coefficients for a periodic grating andhe analogs to the quantum-mechanical potential are the di-
should therefore be an efficient representation in gratingelectric functione(x,y,z) and the magnetic permeability
with slow (or rare change. Such a basis has been employedk(x,y,z). Unlike most previous work with photonic crystals,
for scattering-matrix formulations, in which the Bloch modeswhere one finds eigenvalues at a fixed wave vectad, we

of a discreteset of locally uniform gratings are matched at will find wave vectoreigenvalues at a fixed: only fre-
their boundarie$11,19. Although this is an effective com- quency is conserved in a nonuniform waveguide, and we are
putational tool, it still involves a discontinuous change of theinterested in the field profile as a function of

basis coefficients and so it is suboptimal for slow tapers By moving all of thez derivatives to one side and ex-
compared to thecontinuouslychanging grating representa- pressing{E,,H,} in terms of the transverse field&; ,H},
tion that we develop here. Our method is the natural analoghe fully vectorial source-free Maxwell’s equations for time-
of the classical treatment of ordinary tapers in terms of in-harmonic states are easily rewritten in the fdi3#,35
stantaneous eigenmodes. Moreover, the continuous represen-

tation especially lends itself to analytic stu@gven beyond . 9.

the adiabatic theorem its¢lfFor example, we immediately Alyy=—i—Bly), (@]
find that the scattered/reflected power falls with the square of 9z

the taper length, and oscillates at a rate given by the phase-

velocity mismatch with the scattered mode. A related probwhere|) is the four-component column vector,

lem has been studied in a continuous Bloch basis for quan-

tum mechanics, that of a slowly modulated time-oscillatory

Hamiltonian—there, the analysis is greatly complicated by |¢>E(
the fact that the eigenvalue spectrum is unbounded and be-

comes dense in the presence of the oscillafi®dn2§. Fi- A .

nally, we should mention that another possible basis is that cind A andB are

E.(Xx,y, )
X,y Z))e—lwt, @

Hi(x.y,2)
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0 wple= —ViX—VX defining C=A+i(d/9z)B. Such solutions satisfy all the
(3) usual properties of Hermitian eigenproblef®2], e.g., or-
thogonality: (8*|B|B')=0 as long as8+ B’ (|8*) is the

1 eigenstate with conjugated eigenvalg&). Note the com-
0 —7x 1 plex conjugation: because the eigenoperators are not positive
E E( . ) = 1 =B7%, (4 definite, the eigenvalueg are only real wher{8|B|B)+0
zx 0 (imaginary 8 corresponds to evanescent modethis is a

1 significant departure from the real eigenvalues of quantum
mechanics, and requires such an extended form of the or-

where V, denotes the transversgy) components oWV . A thogonality relation. For the case of a uniform waveguide
and B are Hermitian operators(for real/lossless and x)  (C=A) where the eigenoperators are real symmetric, we can
under the inner product of two statpg) and|y’) given by  choosd 8*)=|B)* and(3*|B|B’) becomes the well-known
unconjugatedE; X H, power-orthogonality relation that is
usually derived from Lorentz reciprocity8,15,54. (More-
over, in uniform waveguides, this orthogonality holds even

o ) for complexe, sinceA is then non-Hermitian but still com-
Above, we havenot made any approximations, paraxial or pjex symmetric.

otherwise; Eq(1) represents the full Maxwell's equations. In * A corollary of Bloch’'s theorem tells us that the eigen-

this way, we can analyze and exploit the linear algebraignodes afg and g+ (27/A)¢ are equivalent for any integer
structure of electromagnetism without wading through they |y particular,

usual three-dimensional mire of curls and components.

Moreover, we show that many results such as orthonormality o

relations(as well as, e.g., perturbation thedi34—-36) fol- B+ _g> = e~ 27Nz gy (9)

low automatically from well-known properties of Hermitian A

eigensystems, without requiring cumbersome rederivation in

terms of explicit vector field$8]. which implies an extended version of the orthogonality rela-

The constant matrid8 couples theE and H fields and  tionship,
plays the role of a “metric” in, e.qg., the orthonormality rela-

()= | B B H ©

tions below, with Eq(4) giving <I3*|§e(—2wi/A)€Z|ﬁf>:0 (10)
<l/f||§|ll/'>:i'f E* X H/ +E[ X HF. (6) for B# B’ +(2w/A)€. Because of the equivalency of Eq.
(9), it suffices to consider eigenvalues whose real parts are in

R the first Brillouin zong[1,37], i.e., R[B]l e (—w/A,w/A].
Thus, (|B| ) is simply 4P, whereP is the time-average Guided modes of a waveguide have finite spatial extent,
power flowing in thez direction. A key difference from and it follows that they have discrete eigenvaligs We
quantum mechanics is that neithemor B is positive defi- denote such states ) and normalize them to
nite, which has important implications for the eigenstates and
orthonormality relations below. (m*|B[n)y= 61 770, (11)

Bloch waves, eigenstates, and orthonormality where | »,|=1 and 7, is given by the phase angle of

For a waveguide with uniform cross sectianivariants ~ (n*|BIn), while|m*) denotes the state with eigenvald.
and u), the field|#)=|B) can be chosen to hawedepen- This corresponds to normalizing each r@aimode’s time-

dencee'#? [8], in which case Eq(1) becomes the eigenprob- averaged transmitted power to 1/34]. In order to have a
lem, complete basis, one must generally include the continuum of

nonguided state), which are typically normalized to delta
A|B)=BB|B). (7)  functions:(8*|B|B')=8(B—B") ng. We do not treat this

continuum explicitly here, as the algebraic generalization is
More generally, suppose thatand u areperiodicfunctions  straightforward(sums over states become integyais fact,
of zwith period(“pitch” ) A. In this case, the Bloch-Floquet the continuum can be thought of as a limit of a discrete set of
theorem1,37] tells us that the solutions can be chosen of thestates with conducting boundary conditions that go to infin-
form of Bloch wavese'#? 8), where|B) is now aperiodic ity. In any case, most numerical implementations of coupled-
function with periodA satisfying the Hermitian eigenprob- mode theory must employ a discrete set of states and a finite
lem, computational cell.
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oA
WAVEGUIDES
dey

—n
o
First, we review the well-known coupled-mode theory for rEa e fz
nongrated waveguides in the instantaneous eigenmode z izm Bn(2) = Bm(2)
(“quasimode”) basig[8,15,33, casting the notation and deri- 5
vation in a quantum-mechanics-like form that prepares for xexp{iJ' [,8,1(2’)—,8m(z’)]dz’)cn
the generalization of the following section. Consider an ar-
bitrary (z) [and/oru(z), although we usually have=1], . d|m),
where thexy dependence is implicit. At arg; one can define — 7m(m*|B 97 Cm- (16)
the instantaneous eigenstate$, and eigenvalueg, (z) of
an imaginary uniform waveguide with that cross section, satas described in Appendix B, this transformation can also be
isfying derived by differentiating the eigenequation, and the last
term in Eq.(16) can usually be set to zero by a simple phase
A|n>z:Bn(Z)é|n>z- (12) choic_e(e.g., .making the reqﬁ eigens_tates pU(e!y real with_ a
consistent sign The z-varying coupling coefficients of this

equation are now given in terms of the eigenstates of each

As long as the cross section changes continuously, these gl sq section and the rate of change of the eigenoperator
all continuous functions of (perhaps only piecewise differ- - o . .
(P P y P dAldz. This inner-product integralover the cross section

entiable. The actual field ¢(z)) can then be expanded in can be writen more simply in terms of the full six-

these states at ea ) . . .
h component field state, after integration by parts g
oA
*
E,+F—
"9z

[34,39,
z
W(@)=2 cn<z>|n>zexp(i f Bn(Z’)dZ'). (13 .

x| = — P .

<m 9z n> CJ’ gz ™
with zvarying coefficientsc,(z). (The integrated phase 1
choice [30] produces a convenient cancellation in the
coupled-mode equationsThese coefficients satisfy a linear

differential equation that can be found by substituting Eq.
(13) into Maxwell’'s equations, i.e., into Eql),

Ill. COUPLED-MODE THEORY FOR NONGRATED <
m*

de (9,U,H*

m*

“Hpl.

The m* andn subscripts denote the fields [oh* ) and|n),
respectively. Note, however, that when ther u variation
includes shifting high-contrast boundaries, special care must
be taken with this integralnd, in particular, with the result-
ing surface integrajsbecause of the field discontinuities
[34-36.
Equation(16) is of precisely the same form in quantum
mechanics, and exactly the same methods and theorems ap-
ply. In particular, in the limit where the cross-sectional varia-
exp( i f Bn) tion becomes arbitrarily slowfand thus dAldz becomes
small, the well-known adiabatic theorefi8,38—43, reca-
pitulated in Appendix A, states that(z) goes toc,,(0)—no
. . intermodal scattering occur@\e discuss approximations for
=AlY(2))=B> Bacaln), exp{ if ,Bn), (14 the intermediate case of finite slow tapers in Sec. IV E, once
" we have developed the generalized theory.

a.
—i—-Bly(2))

R dc, _ o dn)
—B; —IE“’I)Z—ICn 97

< +:8ncn| n>Z

where we have used Ed12). Thg equation for a given IV. COUPLED-MODE THEORY FOR GRATED

dCml oz is then found by multiplying both sides by WAVEGUIDES

nr(m*|,B and employing the orthonormality relatidal), o ]
which yields Above, the key to deriving a coupled-mode theory with

near-adiabatic coefficients was the identification of a slowly
varying “instantaneous” waveguide at any givenThat is,
d&: — 2 <m* B% at eaclz we imagined an infinite, uniform waveguide and its
dz M4 Jz eigenmodes. The same idea carries over to gratings, except
, that here we imagine an instantaneous, infirgieriodically
Xex;{if [B.(2)—Bun(2))]dZ |c,. (15) grz_ited Waveg_mde. I_3e(_:ause this instantaneous grz_iteql wave-
guide has axial variation, we must explicitly identifyva-

tual coordinatez in which the instantaneous waveguide ex-
This is still not entirely convenient, as it requires the deriva-tends infinitely, distinct from thehysicalcoordinatez of a
tive of |n),. The derivative of an eigenstate, however, isgiven cross section, as depicted in Fig. 1 and discussed in
given exactly from first-order perturbation theory82], and  more detail below. This extension into a virtual coordinate
so one finds system causes the algebra to be somewhat more interesting
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- 1 Bloch-wave junciicns

FIG. 1. (Color For a physical nonuniform gratingop, black at
a givenz=z,, we imagine(a@) an infinite uniform grating with pitch
A(zo) extending in a virtuak space, matching the physical cross
section at corresponding scaled coordinaies= = {(z,). Such a
grating is not unique, and corresponds to a choice of basis—an
alternate choice that also matches the requisite cross section is
shown in(b).

unifarm-layar junclions

FIG. 2. (Color) The saméconstant-pitchphysical taper, from a
than before, but we shall see that we arrive at almost exactlyniform waveguide to a grated waveguide of blocks with width
the same form for the result. =wjs, can be represented by different virtual tapexz): (top) a

Moreover, the instantaneous grating has a peridd) continuous linear changémiddle) sharp juqctioqs at each. of
that may bez dependente.g., for a “chirped” grating, as unlform_grateql wavegundes_{bottom) sharp junctions pf gr_uform
described below. This makes it convenient to introduce thd/aveguides given by the instantaneous cross sedtiaditional

. L~ o~ . coupled-mode theo
scaled virtual coordinaté=z/A(z) so that the instantaneous P v
gratings always have unit period. We must also define a COfrom 1 tow;, but many choices ofi(z) lead to exactly the

responding “physical” scaled coordinatgé=J*dz'/A(2');  same physical taper structure. The most adiabatic choice is a
intuitively, ¢ is the numb_er of varlgblel per|.o.ds traverseq UPjinear variation, shown as the top graph of the figure. An-
to z (The proper coordinate choice is critical to obtain agther possibility is a piecewise-constant sequence of uniform
convenient form for the coupled-mode equations. grated waveguides, changing discontinuously after each pe-
riod; this case, shown in the middle graph, leads to a
A. The instantaneous virtual grating scattering-matrix formulation based on the transfer matrices
at each junction(a generalization of Ref[19]). A third
variation implicit and droppingu for simplicity), we must chqlce 'S that. pbn|form waveguides =1 or W= 0).' Just
) ) i o ) ~ as in the traditional theory of Sec. IV above; this will lead to
define at every a virtual unit-periodic grating,(¢), where  he standard a set of transfer matrices at ezidterface. Al
e{+1)=¢,({). The connection to the physical system is of these representations will produce g@menumerical re-
that we require sult for the transmission, if integrated with a complete basis,
but are different basis choices that will have differé&tton-
e =e(2). (18) ger or weakerscattering between the basis coefficients. The
first choice of a linear change is the best from an adiabatic
That is, the virtual grating must coincide with the physical perspective, producing a continuous set of differential equa-
waveguide cross section at ¢ (the analog taz in the vir-  tions(below) that can be integrated efficiently with few basis
tual spacg this also implies a choice of origin in virtual functions for slow tapers; the third choice is the worst, in-

space. Because,(7) is defined by the entirée [0,1) primi- volving strong scattering even for a uniform grating and re-

tive cell, but is only constrained at a singje the choice of quiring a Iarge basis f_or ac~cur_ate results. _

the instantaneous waveguide and A(z) is not uniqueas Once a virtual grating:,({) is chosen at each we find
shown in Fig. 1, unlike in the preceding section. This merelyits Bloch eigenfunctiongn({)),, where we explicitly iden-
indicates a choice of expansion bases, however, and for goaty the virtual 7 dependence inside the brackets, as opposed
adiabaticity we should seleet, and A(z) so that they vary to the variation withz as the instantaneous grating changes,

continuously and as slowly as possible with denoted by the subscript. This eigenfunction satisfies
Figure 1 points out that the virtual grating need not even

resemble the physical structure in order to satisfy @@), o~

but the more similar the physical and virtual structures are, CAIn(L)) =
the more adiabatic the basis choice is likely to be. Another

example that directly illustrates the consequences of the B A~
choice of virtual grating is depicted in Fig. 2. Here, we imag- =Bn(2)BIn(2)), (19
ine a taper to a grated waveguide of pitéh=1, consisting a ~ ) ~
of blocks of widthw=w; , from a uniform waveguidécor-  WhereA;({) is the A from Eq. (3) with &,(¢) instead ofe
responding tav=1), an example considered in more detail [S0 thatA,({)=A)], and we have defined a new operator
in Sec. V. The natural virtual waveguides are gratedC,({) in analog to Eq.(8). As described earlier, we only
waveguides with blocks of intermediate widtv§éz) ranging  consider eigenfunctions in the first Brillouin zon®[ 8]

Given our physical variatiom(z) (again leaving thexy

n o~ i d. ~
Az(§)+m&_~55)|n(§)>z
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e (—ma/A,m/A], wherefk denotes the real part, since other
modes are redundafand are effectively reinserted belpw

B. A parametrized expansion basis

The question now is how to turn these eigenfunctions into

an expansion basis for the stdig(z)). We would like to

expand in|[n({)),, i.e., theZ=¢(2) slice of the instanta-
neous eigenstate atsince this is thexactBloch eigenstate
basis in the limit of a uniform gratingwhere {=2z/A and
[n({)), is the eigenstatfn)]. In that basis, however, we no
longer have a separafedependence, and this is a problem:
in order to employ the orthonormality relation to pick out
particular state coefficientas in Sec. Il], we must integrate

over{ andnotover{ (andz). (Equivalently, the Bloch basis
is overcompleteon a single cross section/slice, unlike the

conventional instantaneous basis of Sec. Ill, and must bé+ 5)

disambiguatedl.

PHYSICAL REVIEW E 66, 066608 (2002

|n),
|n>Z I n (92

B|¢(Z)>§ BE

i J ifB
Kcna_z|n>z+:8ncn|n>z e-m

=A(L+D ()7

el/Bn,

—BE

- _Cn ~ |n>z+:8n n|n>z

(22

where|n), denotesn({+7)),, andd|n),/dz is the partial

derivative with respect to the subscriptonly (not acting on
[We have used the fact thatd/dz)f,({+7)
=(0192)f (£+ )+ (UA(2))(9130)F (¢ +7).] Just as in Sec.

We must therefore add an expliditdependence back into I, several terms cancel due to our choice of eigenstate basis
the basis, and we do this by extending the coupled-modénd the proper coordinate systenGiven the remaining
equations to solve damily of problems parametrized by terms, we can find the equation fdc, /dz by multiplying
shifts in the virtual gratings. At the end, we will project back with 7% (m* (Z+7)|, eZ“'kgB which involves an integral

down to the physical problem to yield the desired result ingyer 7—that is, we must integrate over ttiamily of field
the[n(¢)), basis. ~ solutions at a fixedz. The generalized orthonormality rela-
In particular, consider the stafe({+¢)),, which solves tion of Eq.(10) thereby yields

the eigenproblem of Eq19) for the operatord,({+7) in
e,(£+7) [with the same eigenvalug,(z)]. Up to now, we
have imagined that for each we have a virtual grating ia
space—z parametrizes the gratings. The converse is also

de’k
dz

—27Ti(€—k)z a|n(§+2)>z

== <m*<§+z>‘8e >

possible, however: for ever; &,({+7¢) as a function ot is
a different variable-grating structure, coinciding with our

physical systenz(z) only for the shiftz=0 (not¢{=0). For
eachof these systems, parametrizgueriodically by Z, we
can imagine solving for the field evolutidrp(z))z, expand-

Z’)_Bm(zr)]dzl>cn,€- (23)

X exr{ i fz[,Bn(

Here, the inner-product integral is over the virtual coordinate

7 shifted by{; we can eliminate thigz dependence by the

coordinate changé—{— ¢,

ing the fields atz in the basis ofn(£+7)),,
dcm k
dz

d|n),

% *|Ra—2mi(0—kK)T

|¢(2)>z=§n‘, cn(z,'Z)In(§+Z’)>zexp( i fzﬁn(Z’)dZ’).

(20

XeXF{ 27Ti(€_k)§+if (Bn_ﬁm))cn,h (24

Because the coordinate is unit periodic, we can choose

c.(z7+1)=c,(z7), and thus the, can be expanded as a Where [m*), and [n), now denote simply|m*(2)), and
Fourier series irt, In(2)),. Finally, we employ the method of the Appendix B,
as in Sec. lll, to re-expresgn),/dz in terms of the deriva-
tive of the eigenoperator from E@L9),
|
z

Lo

z
xex;{i] Aﬂnye;m,k(z’)dz’)cnye
. 9lm),
0z

— m(m*|B

=3 ez 21 .
ezwikz ICA%) e—zwiez
0z

Aﬂn,f;m,k(z)

for some coefficients, ,(z). The physicalf=0 solution is

then simplyc,(z) =2 ¢, ((2). n.{Fmk

C. Coupled-mode equations

To solve for the parametrized field evolution, we substi-
tute |4(z))7 into Maxwell’s equationg1) for e,(¢+ ),

Cm,k ) (25)
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where the phase mismat@y3 is given by Second, for near-adiabatic evolution starting with power in a
single modeg, «(0)= 8 ndk oCn(0) [55], one can integrate

2w . . ) A
ABn ¢:mi(2)=Bn(2)— Bm(2) + m((g_ k) (26) the equationspproximatelyto first order indC,/dz,

. - 1 9C(0)
andaC,(2)/dz is . <m* gm%’”>
0
A~ A~ c =-c,(0 *f d
DA  dA o oy O, T Ao
gz oz ' dz i ,
A ><exp(if Aﬂnyo;m,k(z’)dz’>, (28
As discussed in Appendix B, the fingh* |Bd/dz|m), “self- 0

interaction” term can be set to zefat least for any regB
mode by an appropriate phase choice for the eigenstatewith [cy|?/|c,|* being the scattered power fraction; this ap-
|m),, and we therefore drop it in most of the the following Proximation should be accurate as long as the total scattered
discussion. power is small(e.g., <0.1 is often sufficient The lowest-

In deriving the numerator of Eq25), we have used the order losses in mode are then found by conservation of

fact that the commutator a2 ¢¢ with 9/d7 is a constant, POWer: |cn(2) 2:|Cn(0)|2_2m¢n|cm(z)|2'_ This technique
which integrates to zero thanks to the orthonormalityWorks even to compute reflections: &, denotes a
relation—so, we are free to move the phase terms to eithdf@ckward-propagating wave, then the boundary condition of

. o~ . C_m(zg)=0 at the end of a taper can be satisfied to first
side of 9C,({)/dz. We have also used Eq9) in order to m . B
interpret the combination of the phase terms with the eigen9rder by setting the reflected wawe n(0) equal to—1

. times thec_,,(z5) computed from Eq(28).
states|n), and |m), as the eigenstates ¢f,+2¢/A and LA . . . .
B.+2mk/A. Note that in the limit ofdA~Y/dz=0 andA In single-mode grated waveguidesg., in photonic crys

~0, we reproduce the standard result of Sec. Ill talg), the scattering losses for slow tapers will often be com-
’ T pletely dominated by reflection, for several reasons. First, in
o an omnidirectional photonic crystal, there are no other propa-
D. The adiabatic theorem gating states in the band gap to couple to; this not true,
The generalized coupled-mode equation of Bf) can  however, for transitions between photonic crystals and con-
be simply understood as the ordinary coupled-mode equaentional waveguides. Second, if one operates near the
tions in the basis of the Bloch states plus all of their/A ~ guided-band edge, the smallesg will typically be for the
equivalents. There are only a few new aspects, maiilyhe reflected modéwhich lies just on the other side of the band
inner product is over the three-dimensiof@D) unit cell in ~ €dge. Third, recall that the fields in the coupling-coefficient
7 space, not over the cross sectidif} there is an additional integrals are no[mal|zed—eqU|vaIentIy, one divides the coef-
term from the rate of changeA/dz of the period; andiii)  ficients by |(n*|B|n)| terms, which are proportional to the
thek label is “fictitious,” and must be summed at the end via power and thus to the energy density times the group veloc-
Eq. (21). None of these variations affects the proof of theity. The group velocity in a photonic crystal, however, is
adiabatic theorerfe.g., in Appendix A, which only depends often small due to Bragg scatteriigoing to zero at the band
on the basic form of the system of equations and on th€dge, and thus the coupling to reflected modesich are
decreasing coupling as the system changes more slowly, $8s0 slow can be greatly amplifienversely with the group
we can immediately conclude that it holds here as well: If thevelocity) relative to, e.g., radiating modéabove the light
system changes arbitrarily slowly withand 8, remains real line). We demonstrate this domination of reflection numeri-
(propagating and discretéguided, the Bloch modes trans- cally in Sec. V, and its fortunate consequence is that one
form adiabatically andc,(z) approaches,(0). The key typically only needs to compute the scattering from E28)
conditions that the mode always be propagating and guidefietween asingle pairof guided modes.
are discussed in further detail in Sec. VI, where we show One can gain additional insight from this first-order ap-
how they can be satisfied by computing the band diagrams d¥roximation because the coupling coefficients aglvalues
all intermediate points in the taper and altering the tapegre usually slowly varying. As a crude simplification, sup-

design accordingly. pose that we simply replace them bgnstantstheir values
at some intermediate point in the taper. Furthermore, con-
E. Approximations for slow tapers sider only thek with the largest contribution, i.e., tHefor

_ . . . which|ABp omkl IS minimum. In this case, Eq28) can be
SoIV|_ng the coupl_ed—mode equations in general, .for f'n.'temtegrated analytically to yield a scattered power,
tapers, involves setting boundary conditions on the incoming

waves at both ends of a waveguide segment and then inte- - 2
grating the full coupled-mode systef8,15], in principle, . ~dC,
<m* |e2mkg_|n>

requiring expansion in infinitely many modes akdalues. Cren(2)[? 9z

For slowly varying systems, however, several simplifications mn ~4 SiIr?(A Bpnz/2),
apply. First, it is clear from Eq(25) that nearby8 modes lcn(0)? ABnm?

give the greatest contribution, so the basis can be truncated. (29
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where the bar above tha B,y etc. indicates whatever .5,se the coupling factors are continuous functions, of

average/intermediate value is chosen. Such an approximatiQfyffices to compute them only at a few intermediate points
actually works surprisingly well to predict the qualitative gnq then interpolate.

behavior of a taper with a large taper lengthL: as we
demonstrate in Sec. V, the scattering as a functioh ok-

cillates sinusoidally with period~27/AB and overall de- V. NUMERICAL EXAMPLE
creases as lLf (from the taper rateC,/dz~1/L). Despite the contortions of the derivation, our end result
(25) is straightforward to apply: a set of coupled differential
F. Coupling-factor evaluation equations in the Bloch eigenmodes wittvarying coeffi-

) ) N~ i . cients. A key feature is that once these coupling coefficients
The coupling factor, i.e., theC,({)/dz inner product in 416 computed for a given taper lendthwith a computation
Egs. (25),(28), can be expressed in a derivative-free formjn,oving only the unit cells of intermediate virtual
that is more convenient to evaluate. First, B# d/ term in  waveguides, they can then be reapplied to brigny degree
Eq. (27) can be rewritten in terms d%, and a constant term of gradation by scaling them with the rate of change. Unlike
(which integrates to zejovia the eigenequatiofil9). Sec- most numerical methods, the computation becomes easier
ond, as in Sec. lll and Ref$34,35, we can integrate by and smaller as the taper beconmasre gradual, since fewer
parts inxy to yield an integralover theZ unit cell) in terms basis functions are required for accuracy in the adiabatic

of the full six-component fields of the instantaneous Blochlimit. To illustrate this, we apply the coupled-mode equations
states at. above to a waveguide transition in an example two-

dimensional system, depicted with their dispersion relations

< o| 2mic aC,(7) ’ > in Fig. 3: a conventional dielectric waveguide=€ 12, thick-
m*|e —_—

:ﬂj (27 A)KZ

c

nessh=0.4a) and a grated waveguide consisting of a se-
quence ofwxXh=0.4aX0.4a blocks (=12, period A
) =a), both surrounded by aire(=1). We focus on the fun-
€z

Jz

E:;* -E, damental TM-polarized modes of each waveguide, for which

(asz@ dA 1
9z dz E= Ef/ is perpendicular to the 2Dx(-z) plane and the field
dA~1 is even with respect to the=0 waveguide axis. The modes
+2TSZE:1* Enz in both waveguides are confined in the laterg) ¢lirection
by index-guiding(they lie beneath the light ling and the
grated waveguide has a band gap in its guided modidls
Hr’;* “H, We emphasize that our theory is fully three dimensional; it is
only the limitations of the second numerical method that we
use here for comparison that limits us to two dimensions
dxdsz (30 (other 3D methods typically require enormous computing

power to calculate transmission through very gradual tapers

iz dz Mz

7 -1
+<cmz<§> dA

dA"t
+ 2= M Ho

where we have recast the integral in terms of the unscaled
coordinate, and have included the generalizationuef1
and an instantaneouys, grating analogous te,. (The fields In order to compute the eigenmodes of these waveguides

are assumed to be normalizéa*|B|n),= 7,, which can- (and of the intermediate instantaneous gratings in the tapers
cels thef—7 Jacobian facton as long as we are consis- we employ preconditioned conjugate-gradient minimization

tent) Them* andn subscripts, as before, denote the fields ofOf ﬂ?e bIOCk. Ray[eigh quotient for the fully _vectorial Max-
. . ~ ~ well's equations in a plane wave basis with a laterg) (
m*) and |n). Again, de,({)/dz (or du,({)/dz) must be

: / NO/UTE supercell, using a freely available software pack .
handled specially for moving bou_ndarles in h|gh-contra_st(-l-ﬁis techniqueg yields tr{e frequenay for a givrt)an B;@Qbﬁl]]t
systgms—there, they yield well-defined surface mtegrals iNthat relation was inverted using Newton's metHdé] with
volving only the continuoug; 'and D, (orHjandB,) field 4 o help of the group velocitgw/dB computed via the
components at the boundarig36]. We also note that EQ. yeiman-Feynman theoref82].) The eigenmodes were then
(30) involves de,({)/9z|7-7x , Not de,(2)/dz (similarly for  ysed to compute the coupling constants by @), modified
uz): itis the rate of change of thenit-periodvirtual grating.  for shifting boundaries as in R€f36]. All structures possess
In order to drop the inconvenierﬁh*|I§(z~7/(9z)|n)Z self-  inversion symmetry, allowing the field Fourier transforms to
interaction term from the coupled-mode equations, as debe taken as purely reg#5] so that phase consistencss
scribed in Appendix B, we must choose a consistent phaseescribed in Appendix Bis maintained by a simple choice
for the eigenstates as a function nfAs described in the of sign.
Appendix, there are several ways to enforce such phase con- Coupling constants and eigenvaly@svere thereby com-
sistency in practice, the simplest being in the common casputed for 17 intermediate waveguides in the taper, linearly
where the dielectric structure has inversion symmetry, irinterpolated, and integrated by a trapezoidal rule. To inte-
which case the Fourier transform can be chosen as purelyrate the full coupled-mode equations, in principle, one
real with a canonical sign. Finally, as described below, bewould employ a set of many guided, evanescent, and radia-

A. Computational methods
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FIG. 4. (Color Three constant-period\(=a) linear tapers be-
tween a uniform waveguide and a grated waveguide of dielectric
squares, and back again after five periods of uniform grating. Taper
lengthsL of 4a, 6.4a (yielding an asymmetric on/off taperand
10a are shown.

{-1,0,1,2,3 to be more than sufficientk=1 gives the
smallestAB=B—(—B)—2wk/IA for B nearw/A, and is
thus the largest contributignMoreover, once the coupling

matrix elements are calculated, the scattered/reflected power
FIG. 3. (Color) Dispersion relation for a 2D uniform dielectric can be found for many taper rates at a negligible added com-

waveguidgfilled blue circle$ and a grated waveguide consisting of putational COSt; .
a sequence of blockéollow red symbols with the structures For comparison with the coupled-mode theory, we em-
shown as insets. The grated waveguide is periodig,iwith the ~ Ployed a rigorous scatteringransfey matrix method based
periodic extension of the backward-propagating modes show®n €igenmode expansions at each cross sefti8hand lat-
(squares after the dashed vertical line. Only TM-polarizedl (n  €ral perfectly matched layer boundary conditip4g], with a
plane modes having even symmetry with respect to the waveguiddreely available software implementati¢@1,48. Given an
axis are shown. incident field in the fundamental mode of a uniforimon-
grated waveguide, this method returns the transmitted and
tion modes(above the light ling Here, however, we focus reflected power in any desired modes of uniform input and/or
on modes in the vicinity of the band gap where photonic-output waveguides. Moreover, if the input and output
crystal effects are strongegand therefore of the greatest waveguides are-uniform waveguides, this method induces
interes}, so the primary coupling is to the reflected mode aszero numerical reflections from those two boundaries.
discussed in Sec. IV E. Moreover, since we desire mainly to Therefore, because of the limitations of this scattering-
achieve high transmission—i.e., near-adiabaticmatrix method, we compute the transmission through a
transitions—we employ the first-order integratiomith re-  double taper starting with the uniform waveguide, transi-
spect to the taper ratepproximation of Eq(28). In this  tioning to the grated waveguide, propagating for five uniform
way, we need only compute the coupling-matrix elementgperiods, and then transitioning symmetrically back to the
between the incident« 8) and reflected { 8) modes, as uniform waveguide. This is done for both the “exact”

well as the various 2Zk/A shifts; we found k= scattering-matrix method and for the first-order integration of
1
5 Ay e /TP
01 7 : FIG. 5. (Colon Reflected
1 power at w=0.2xX2wc/a from
= ) the constant-period tapers of Fig.
< 0.01 3 4 as a function of taper length
‘g “Exact” scattering-matrix results
= 3] are shgwn as. grgen circles,.wlhile
v 0.001 ] the solid red line is the prediction
=t . of our coupled-mode theory with
2] 0.1 the first-order a imati
= 0.0001 < : pproximation.
c ] 001 l# Blue squares are one minus the
o : i transmission from the scattering-
8 0.00001 0.001 o | = transmission }, ¢ matrix calculation, and demon-
[ ) & ..
] . strate that the transmission losses
2 0.0001 - Flact : .
. - retlection are dominated by reflections ex-
0.000001H ;00001 | e | _ cept for L<3a. The inset is a
: ia } A predicted reflection magnified view forL =40 - -50a,
’ showing the typical picture in the
0.0000001 T il slow-taper limit.
1 10 100

taper length L (units of a)
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the coupled-mode equations, in order to compare the reflec- VI. PITFALLS TO AVOID
tion coefficients (power into the fundamental backward-

propagating mode of the input waveguidBecause of the the most straightforward transitions can actuallyprsen
proximity of the band edge, such reflections completelyy,ngmission, but which are easily circumvented if one is
dominate the losses—as seen below, the sum of transmitted(yare of them. These pitfalls are related to the two criteria
reflected power into the fundamental output/input mode wagy adiabatic tapers given in the introduction, and we illus-
unity to within numerical accuracy for most taper lengths. {rate both the problems and their solutions in this section.

In designing adiabatic tapers, there are two ways in which

B. A constant-period taper A. Shifting band gaps

As a first example, we make a transition between the two  The first pitfall is that, when one operates near a band

waveguides by linearly varying the widti of the blocks, eqge, a straightforward taper will often shift the band gap
from w=1.Ga for the uniform waveguide tor=0.4a for the  over the operating frequency, violating the conditions on the
grated waveguide, maintaining a constant pifch a, oper-  adiabatic theorem and with disastrous results for transmis-
ating at a frequency ob=0.2X2xc/a. One could choose sjon. This case is easily detected by computing the band gaps
the physical tapered waveguide structgfg) and then de- of the intermediate points in the grating, and avoided by
fine a corresponding set of virtual instantaneous gratingtapering theperiodas well as the grating strength in order to
&,(7), but it was more convenient to do the reverse: chooséove the band gap out of the wa similar idea was pre-
a continuously varying virtual grating and then define theviously demonstrated, without proof, for one-dimensional
physical structure by Eq(18). Specifically, we choose the Photonic crystal$13].) _ .
virtual grating s (Z) to have blocks with a widtiw(z)/A The transition from a grated waveguide to a uniform
=1-0.6z/L (i.e., linearly varying in the taper region of wavggwde n the preceding section, for example, e>.<h|b.|ts
lengthL. In order to find the corresponding physical struc- precisely th's problem. Not OU'V does Fhe gap reduce in size
ture £(z), we must determine the block boundaries. The2S the grating V\{eakens, but it also Sh"‘m’””? frequency
leading/trailing edge of thath block in the(uniform) virtual pecause the_umform waveguide has more high-index mate—
oY i rial [1]. The instantaneous band-gap edges as a function of

grating is at¢, (z) =n=w(z)/2A, so by Eq.(18) the physi-  {aper position are shown in Fig. @lue circles, and illus-
cal leading/trailing edge is a, , satisfying trate this phenomenon. Now, if one operates at a frequency
of w=0.23x2mc/a, for examplejust below the lower band
edge of the final grated wavegujd¢here will be a region of
the taper where this frequency lies within the instantaneous
band gap, causing the transmission to drop exponentially and
which is an easily solved linear equation. This results in theo thereforefall as the taper becomesore gradual—this is
taper structures shown in Fig. 4 for three different values okhown in Fig. 7, computed via the scattering-matrix method.
L; note that by defining the physical structure in this way, we(There is a 56% resonance peak at a short taper length, but
are not limited to integer values &f A (with fractional val-  this will not yield a broad bandwidth.
ues causing asymmetric on/off tapers To correct the problem, one merely needs to shift the band

The resulting reflected power into the fundamental mOdegap back up, and this can be accomplished by reducing the
shown in Fig. 5 shows excellent agreement between thgitch A. Here, we choose to keep=0.4a fixed and de-
scattering-matrix calculation and first-order coupled-modecrease 1A linearly from 1/0.4 to 1/a to taper from the
theory, even for fairly short tapers. Also plotted is one minusyniform waveguide to the grated waveguide. The resulting
the transmission, to verify that the sum of reflection andband gap edges are depicted in Figréd squares the band
transmission is unity to numerical accuracy except for Verygap moves quickly upward now as the gap closes. Thus, the
short L<3a) tapers, as is expected in the vicinity of the adiabatic theorem holds and the reflection eventually falls off
photonic band edge. Moreover, the curve exhibits the feags ~1/L2; this is illustrated in Fig. 8(As in the preceding
tures that one can predict from the even cruder approximasection, the sum of the reflection and transmission is nearly
tion of constant coupling in E29): the power oscillates unity,) In this figure, we compare the exact scattering-matrix
with a period on the same order ag/2 8=4a and overall  result to our first-order coupled-mode theory, this time with a
declines as 1/ towards the adiabatic limit of 100% trans- variable A (z), and show that again it achieves accurate re-
mission. Note that the phase of the oscillation is frequencyults once the taper is sufficiently long that the reflection is
dependent, much like a Fabry-Perot resonance oscillation, samall (<0.1).
in order to obtain a broad bandwidth of high transmission As with the constant-period taper, it was convenient to
one should ideally choose a taper long enough so that théefine our variable-period taper by first choosing the instan-
maximaof these oscillations are within tolerable levels. taneous grating&o vary linearly, and then constructing the

In the following section, we compute a similar illustration physical gratings(z) by applying Eq.(31). This time, {(z)
of coupled-mode theory for the case of a variable-period= [“dZ'/A is quadratic, so solving for the taper’s block
taper, which is introduced in order to counter one commoredges involves a quadratic equation. We should also note
stumble in designing adiabatic grating tapers: a shifting banthat, althoughw here is constanty/A is not, so when evalu-
gap. ating the coupling matrix element of E(O0) there is still a

iz =n=w(z)2A={(z)=2; 1A, (3])
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FIG. 6. (Colon The instantaneous band-gap edges as a function taper Iength I (units of a}

of fractional grating widthw/A in the taper. Blue circles: fixed,

in which case the gap shifts down as it closes. Red squares: decreas- F|G. 7. (Colon Transmitted power ab=0.23x 27rc/a through

ing A (so thatw is fixed), making the gap shift up as it closes. Any the constant-period tapers of Fig. 4 as a function of taper lehgth
frequency that intersects the gap at any point in the taper will haveis computed by the “exact” scattering-matrix method. Transmis-
low transmission. sion drops rapidly(after an initial resonangebecause this fre-

] . _quency intersects the gap at some points in the tépemn Fig. 6.
de,ldz surface-integral term from the shifting boundary in

the unit-periodvirtual grating. . . . . .
P 9 9 tinuum without ever movinghroughthe continuum, which

would cause it to become nonguided.

One straightforward transition is to slowly “turn on” the

The second criterion of the adiabatic theorem is that therystal (increasing the rod sizeas in Fig. 9a). This, how-
mode must be guided in all of the intermediate waveguidesgver, causes the lower-band modes to be pulled down from
it must never enter a continuum. This leads to a second pithe light cone; inevitably, they will intersect the operating
fall when one wishes to couple an index-guidedmode and it will become nonguided with poor transmission.
waveguide—such as a 1D sequence of dielectric rods iHere, it is clear that the mode ceases to be guided when the
air—with a bandgap-guided waveguide—such as a linebulk rods are the same size as the waveguide’s; the failure
defect waveguide in a square-lattice photonic crystal of rodsloes not depend upon this coincidence of shapes, however.
with a TM band gag1]. Two possible transitions between Instead, one can simply bring the photonic crystal in from far
these structures are depicted in Fig. 9. In the index-guidedway, as depicted in Fig.(§). In this case, the lower-band
waveguide, the operating mode is fundamefitaére are no modes, in principle, always exist below the operating modes,
modes below jt but in the gap-guided waveguide the modebut are concentrated far away; when the crystal is sufficiently
lies above a continuurtthe lower-band modeésSomehow, far away, it can be terminated abruptly with no significant
one must manage to transition the mode to lie above a coreffect on the waveguided mode. Thus, adiabatic transfer is

B. Dodging the continuum

1_,,. s
L=10a:

FIG. 8. (Color) Reflected power atw
=0.23x2mc/a from the variable-period tapers
of Fig. 6 as a function of taper length the inset
shows theL =10a structure. “Exact” scattering-
matrix results are shown as green circles, while
the solid red line is the prediction of our coupled-
mode theory with the first-order approximation.
Blue squares are one minus the transmission from
the scattering-matrix calculation, and demon-
strate that the transmission losses are dominated
by reflections.

0.1

| — transmission

0.014

fractional reflection

s predicted reflection

0.001 | I
1 10 100

taper length L (units of a)
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achieved. The transmission spectra for these two cases, tir every intermediate point in the taper—requirements that
pering slowly into the crystal and back out again, are showrare easy to inadvertently violate for transitions in photonic

in Fig. 10 (computed by the exact scattering meths6]. crystals. Fortunately, such pitfalls are simple to avoid by

As expected, only the tapéb) that obeys the adiabatic prin- computing the band diagrams of all the intermediate gratings
ciples demonstrates a wide bandwidth of high transmissionand adjusting the period or shifting the crystal accordingly.

whereas tapefa) yields uniformly low transmission. Near In this way, one can design efficient waveguide transitions
the edges of the guided-mode band, ed®rexhibits Fabry- and couplers in photonic crystals by a sequence of small
Perot oscillations due to the low group velocity in theseeigenmode calculations on independent unit cells of the in-
regions—the taper would have to be longer thaa 1®in-  termediate waveguides, rather than large simulations of en-
crease the transmission thef#Ve also computed the band tire tapers.

diagrams of the intermediate structures for the taper design, A number of future extensions are possible for this work.

to make sure there were not any unexpected interactions withirst, in the examples above, we showed tapers at uniform
surface states of the crystal that might cause the operatingtes, whereas a more efficient transition would employ vari-

mode to become nonguided or evanesgent. able rates. Qualitatively, one would like to taper more slowly
whenA g is small and coupling is strong, and more quickly
VIl. CONCLUDING REMARKS in the opposite case. Quantitatively, the optimal variable

o taper rate could be determined by solving a nonlinear opti-
We have developed a generalization of coupled-modeyization problem based on E(S) (without recomputing

theory, a set of coupled linear differential equatié®s), 1o the coupling coefficienjs Moreover, one could design a
describe nonuniform gratings and photonic crystals in thqaper that shifts the gap edge away as quickly as possible in

instantaneous Bloch-mode basis. Because our formulatiogrder to address the difficult problem of coupling to slow-
involves no discontinuities and centers around an explicit

small parametefthe rate of change of the gratingt lends
itself to effective first-order approximatiof28) and other
analytical study. It enables the computation of reflection and
transmission for tapered gratings, and, in particular, provides
an efficient method to determine how long a taper must be in
order to achieve a desired level of transmission. Unlike other
numerical techniques, which require more computational
resolution and power as a taper becomes more grddundl

is eventually prohibitivie the coupled-mode approach be-
comesmore accurate and efficient for more gradual tapers
with roughly thesamecomputational resources.

Moreover, we have proved that an adiabatic theorem
holds even for strongly grated waveguidgdhotonic crys- 0.000001 -
talg), exactly as for nongrated waveguides, ensuring 100%
transmission for sufficiently slow tapers. This theorem, how-
ever, imposes the requirements that the operating mode al-
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DGEEééDGQGDDOGGDDDDDDGQGGHSQEDD FIG. 10. Transmitted power as a function of frequency through
oo = SO Felelololol: = i HH P i i
coeeanaedrtaniaeteesteestessess the two taper transitions of Fig. 9 to/from a photonic-crystal line-

defect waveguide(a) exhibits the predicted low transmissiémote
FIG. 9. Two possible tapers between a 1D sequence of dielectritog scale due to intermediate points being nonguided, whefeas
rods (radiusr=0.2a, indexn=3.37) and arr =0.2a line-defect  recovers the adiabatic limit of high transmission over broad band-
waveguide in a square lattice of=0.3a dielectric rods in air(a) width. The frequency axis ranges over the bandwidth of the guided
yields low transmission because an intermediate waveguide is nahode (in the TM gap; i.e., the left and right edges of the graphs
guided, whereas the “zipper” structutb) approaches the adiabatic correspond to the band edges, where the low group velocity makes
limit. coupling difficult in a short taper.
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light states near the band edd®luch previous effort has ist even for such continua, but its approach(iis general
been invested in the optimization of conventional tapersarbitrarily slow[40]. (Note that theA 3=0 degeneracies that
[49-52.) Numerical computations in three-dimensional sys-can arise for finitely many guided modes can typically be
tems are an application we are already addressing with amandled by the usual methods of degenerate perturbation
other publication. Finally, our coupled-mode formulation theory, i.e., by choosing linear combinations that diagonalize
need not be restricted to gratings in electromagnetism; ithe coupling matrix. Discrete eigenvalue crossings also do
could be applied to any periodic Hermitian syst@mtime  not present a problen{40].) Of course, all physical

or spacg for which the periodicity is slowly changing. waveguides have some losses, which will prevent the fully
adiabatic ideal, but this is not a concern as long as the taper
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APPENDIX A: THE ADIABATIC THEOREM APPENDIX B: PHASE CONSISTENCY
Although the adiabatic theorem has been proven before In our developmen? of the coupieQ—mode quatlons, we
for equivalent algebraic systenj$,38—43, we sketch a transformed the matrix elementsn*|B-d|n)/dz into an
proof of it here in order to highlight its essential features, ancequivalent expression in terms of tlenown) derivative of
also to point out where it fails. Suppose that we have a set dhe eigenoperator instead of ttufficult to compute deriva-

coupled linear differential equations @(z) describing the tive of the eigenstateWe have dropped thesubscripts for
solution to some-varying system, convenience. This transformation can be understood in

terms of first-order perturbation theof$2], but we instead
dc, ax [z derive it here by explicitly differentiating the eigenequation.
E:ngn Cmn(z)<5> exp<|f Aﬂmn(z’)dz’)cm(z), Moreover, we show that the remainifg* |B- d|n)/dz self
(A1) term may typica_lly be droppv_eql by requiring an easily satis-
fied phase-consistency condition.
for some z-varying coefficientsC,,,, a matrix element in Let us operated/dz on both sides of the eigenequation
terms of some operatdt, and phase mismatchag3,,. Let ~ C,|n)=8,(2)B|n), and then take thém*| inner product
Cun, X, andA B, be independent of the rate of change of with both sides. Noting thatm* |C,= B(z)(m*|B and em-

the system(Our coupled-mode equations, as well as thoseploying the orthonormality relatiofill), one obtains
from quantum mechanics, fall into this formWe wish to

understand the limit as the lengthof a taper becomes long, Jny a8
so we introduce a scaled coordinatez/L to separate the < m* z n> +(Bm— Br){(M*|B —-= —— S -
dependence, in which case the equations become 9z 9z Jz B

dc, axX e o . o .

Ei\;ﬂ Cmn(s)<£> eXP("—J ABmn(s")ds" |cp(s). For m#n, this equation yields the desired result,

(A2) .
aC,

The key point here is that the onlydependence appears in aln) <m* 7 n>
the exponent. It is now straightforward to take the»o <m*||§ = ) (B2)
limit, because in that limit we have epipf(s)]—0 in the oz B~ Bm

sense of generalized functiof&3] for any real-valued func-
tion f(s) with nonzero first derivative—it is a sinusoid that For m=n, on the other hand, one obtains only a trivial re-
oscillates infinitely rapidly, and so integrates to zero againssult. In order to eliminate this inconvenient term, however, it
any smooth localized function. If the coefficients of such ais often possible to choose
differential equation over a finite domais€0---1) go to
zero in the sense of generalized functions, then the solutions . d|n)
are constants,(z) =c,(0), which is the desired result. (n*|B ——=
It is clear from the above discussion, however, that in
order to prove the adiabatic theorem here we restricted the
problem in two waysA 8 must be real and nonzero. Requir- Merely by a proper phase-consistency convention for the in-
ing thatA B8 be nonzero is equivalent to saying that the modestantaneous eigenstates as a function ¢fi particular, con-
must be guided—if it is not guided, it is part of a continuum Sider the rea3 modes that are of primary interest for adia-
of radiating modes and no finite taper length will suffice tobatic tapers; for these modds*)=|n) and(n*|B|n)= 7,
prohibit losses. Strictly speaking, an adiabatic limit may ex-is a constant £ 1) independent of, and thus

= 0 (B3)
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i(n*lé|n)=0= (n*||§@ +(n*|B —=
Jz Jz Jz

8ln>> ¥
(B4)

which implies that (n*|B-d|n)/dz is purely imaginary.
Then, one can select a new phéise—e'??|n) to fulfill the
condition(B3), where is purely real and satisfies

d|n)

40 g B5
dZ_I 77n<n | 0z . ( )
(This phased is closely related to “Berry’s phase” from
guantum mechanids30,31].)

PHYSICAL REVIEW E 66, 066608 (2002

other hand, the fieldBloch modegare not in general purely
real. If the dielectric functiorfand i) satisfies the common
inversion symmetne (—x) = e(x) (for all intermediate grat-
ings), however, then thd-ourier transform of the realB

eigenfields can be chosen as purely fedd]. In this case,

because B is real-symmetric, the inner product

(n*|B-d|nY/az is a convolution of real functions and is
therefore purely real, and thus zero from Eg4) above. So,
again the phase requirement reduces merely to a consistent
choice of sign.

When the phase-consistency requirement is not trivial, it
can still be approximately satisfied numerically in a straight-

There are two cases in which the phase-consistency cofierward way. In the numerical implementation of coupled-
dition is trivial to satisfy. First, in the ordinary coupled-mode Mode theory, one computes the eigenstat¢sat a discrete

theory for nongrated waveguides, assuming seahdu, the
real-8 eigenstates can be chosen to be purely (tbal eigen-
operators are real symmetrian which case the phase is
automatically consister(given that the overall sign is cho-
sen in a continuous fashiprFor grated waveguides, on the

set ofz values separated by some, and need therefore to
choose the phase 0fi),, », relative to that ofin),. Using
these states to compute the finite-difference approximation to
Eqg. (B3), this equation can then be best satisfied by

ei0| n>z+Aza where = —ard 77: <ﬂ* |zéln>z+Az]-
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