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Abstract: We present the light-propagation characteristics of Om-
niGuide fibers, which guide light by concentric multi-layer dielectric
mirrors having the property of omnidirectional reflection. We show
how the lowest-loss TE01 mode can propagate in a single-mode fashion
through even large-core fibers, with other modes eliminated asymptot-
ically by their higher losses and poor coupling, analogous to hollow
metallic microwave waveguides. Dispersion, radiation leakage, material
absorption, nonlinearities, bending, acircularity, and interface rough-
ness are considered with the help of leaky modes and perturbation
theory, and both numerical results and general scaling relations are
presented. We show that cladding properties such as absorption and
nonlinearity are suppressed by many orders of magnitude due to the
strong confinement in a hollow core, and other imperfections are tol-
erable, promising that the properties of silica fibers may be surpassed
even when nominally poor materials are employed.
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1 Introduction

Telecommunications has continued to push optical fibers towards ever-more demanding
applications—such as high bit rates, dense wavelength-division multiplexing (DWDM),
and long distances—and in response there has been renewed interest in alternative fiber
designs to lift fundamental limitations of silica fibers. A particularly exciting departure
from traditional fibers are fibers based on photonic band gaps, forbidden frequency
ranges in periodic dielectric structures that can confine light even in low-index or hollow
regions [1]. Two main classes of fibers have emerged using photonic band gaps: photonic-
crystal “holey” fibers that use a two-dimensional transverse periodicity [2], and Bragg
fibers1 that use a one-dimensional periodicity of concentric rings [3–13]. In this paper, we
study the propagation of light in a novel class of Bragg fibers: “OmniGuide” fibers with
a hollow core, which use a multilayer cladding that exhibits omnidirectional reflection
in the planar limit [7, 10, 14].
In the following sections, we show how OmniGuide fibers bear strong resemblances

to the hollow metallic waveguides that are used in the microwave regime, confining a set
of guided modes almost entirely within the hollow core with similar field patterns and
dispersion characteristics. Because of this strong confinement, we prove that radiation
leakage, material absorption, and nonlinearities from the cladding layers can be sup-
pressed by many orders of magnitude. We also study imperfections, such as waveguide
bends, acircularity (ellipticity), and surface roughness, and present both general expres-
sions and numerical results for these effects. Moreover, like hollow metallic waveguides,
we show that there is substantial loss discrimination between a single lowest-loss mode,
TE01, and other guided modes—this produces modal filtering that allows even a highly-
multimode OmniGuide fiber to operate in an effectively single-mode fashion. Because
this TE01 state is cylindrically symmetrical and non-degenerate, it has the additional
benefit of immunity to polarization-mode dispersion (PMD) from fiber birefringence. In
this way, we demonstrate that OmniGuide fibers have the potential to lift three major
physical limitations on silica fibers: losses (currently ∼ 0.2 dB/km), nonlinearities, and
PMD [15].
One of the hallmarks of photonic crystals is their flexibility, since their optical prop-

erties are subject to deliberate structural and materials choices. OmniGuide fibers also
embody this freedom, permitting a wide variety of layer-thickness designs to enhance
or inhibit specific characteristics (e.g. to tailor dispersion parameters), which we do not
explore here. Moreover, due to the suppression of cladding properties, a much broader
range of materials is available for use than would normally be practical in low-loss optical
fibers. In this paper, we describe methods for understanding and designing OmniGuide
fiber properties, and especially focus on general scaling laws, phenomena, and design
tradeoffs that apply in such systems. For a particular example system, we arbitrarily

1Bragg fibers should not be confused with fiber Bragg gratings—the former use a lateral index
modulation for transverse optical confinement, while the latter use axial modulation for longitudinal
confinement and other effects.
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Fig. 1. (a) Hollow dielectric waveguide of radius R. Light is confined in the hollow
core by a multilayer dielectric mirror made of alternating layers with high (blue)
and low (green) indices of refraction. (b) Hollow metallic waveguide of radius R.
Light is confined in the hollow core by a metallic cylinder.

select an index contrast of 4.6 to 1.6 in the cladding, as has been used in several previ-
ous publications [7, 10, 11, 13].2 We explain how the properties scale with the indices in
Sec. 10, however, and our scaling laws, analytical techniques, and qualititative results
hold true for a wide range of alternative parameters.

2 Hollow Dielectric vs. Metallic Waveguides

In this section, we begin by introducing the basic structure and principles of operation for
OmniGuide fibers, and develop an intuition for their behavior by an analogy with hollow
metallic waveguides [16,17]. One could also compare with other prior work, including the
hybrid system of a metallic waveguide whose inner surface is coated with a multilayer
Bragg mirror [18, 19], as well as several other hollow waveguiding systems [20], but
the pure metallic guide provides the simplest foundation for understanding. In the left
panel of Fig. 1, we depict a schematic of an OmniGuide fiber forming a hollow dielectric
waveguide. A hollow core (index of refraction unity) of radius R is surrounded by a
multilayer cladding that consists of alternating layers having high and low indices of
refraction. The high/low index layers are shown in blue/green. As discussed above, we
choose indices of refraction 4.6 and 1.6, with thicknesses here of 0.33a and 0.67a, where a
is the thickness of one high/low bilayer (we select different thicknesses in Sec. 2.2). Once
a mode frequency ν is computed in units of c/a, the physical value of a is determined
via a = λν for some desired operational wavelengh λ [1]. The radius R of the waveguide
will vary in the differing examples presented in this paper, from a minimum of 2a to
a maximum of 30a. In the right panel of Fig. 1, we show a hollow metallic waveguide.
The core is the same as that of the hollow dielectric waveguide, but a metal cylinder
now replaces the multilayer cladding.
In the metallic case, light is confined in the core by the impenetrability of a near-

perfect metal (nonexistent at optical frequencies)—such confined modes for R = 2a
are depicted in the right panel of Fig. 2. Dispersions relations like this one depict
two conserved quantities: the axial wavenumber β and the frequency ω. In cylindri-
cal waveguides, modes can also be labeled by their “angular momentum” integer m. For
waveguides that lie along the z axis, the (z, t, ϕ) dependence of the modes is then given
by: ei(βz−ωt+mϕ). In a hollow metal tube, the eigenmodes are purely polarized as TM
(Hz = 0) or TE (Ez = 0), and the �-th mode of a given m is labeled TXm�.
In the dielectric case, light is confined by the one-dimensional photonic band gap of

2The actual physical indices that we use are currently proprietary.
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Fig. 2. (Left) Projected band structure associated with the planar dielectric mirror.
The blue regions correspond to (β, ω) pairs for which light can propagate within
the mirror. White and gray regions correspond to situations where light cannot
propagate within the mirror. The thick black line represents the light line (ω = cβ).
Shown in gray are the two omnidirectional frequency ranges of the mirror. (Right)
Dispersion relations ω(β) of the lowest 7 modes supported by a hollow metallic
waveguide of radius R = 2a are plotted. TE/TM-polarized modes are shown in
red/blue, and the modes have angular dependence eimϕ. Note the degeneracy of
the TE01 and the TM11 modes.

the multi-layer cladding, which is easy to analyze in the limit as the cladding becomes
planar. The one-dimensional gaps of the planar dielectric mirror structure as a function
of β (the surface-parallel wavevector component) are depicted in the left panel of Fig. 2.
In these gap regions, we expect the mirrors to behave similarly to a metal, and confine
modes strongly analogous to those of the metallic waveguide; this is verified below.
Because every eigenmode has a finite, conserved m, the effective wavevector kϕ = m/r
in the ϕ̂ direction goes to zero for r → ∞. Without this fact, there would be no band
gaps in Fig. 2, since nonzero kϕ ⊥ β would have to be projected onto the Bragg band
diagram. Also shown in this figure, as gray regions, are the ranges of omnidirectional
reflection: the frequencies at which any incident wave from air will be reflected by
the planar mirrors (and vice versa). Omnidirectional reflection per se is not strictly
necessary for guidance in these fibers, but its presence is strongly correlated with the
regimes of large, polarization-independent gaps along the light line that are important
for many of the properties studied in this paper.
Bragg mirrors have different band-gaps for “TE” and “TM” polarizations, referring

to fields purely parallel to the interface and fields with a normal component, respectively.
(Both polarizations are shown in Fig. 2.) This corresponds to the waveguide TE and
TM labels only for m = 0; all m �= 0 modes have some nonzero Er component.

2.1 The modes in an OmniGuide fiber

The modes supported by any cylindrical waveguide, including metallic waveguides, Om-
niGuide fibers, and traditional silica fibers, can be computed by the transfer-matrix
method of [3]. Here, the longitudinal fields (Ez and Hz) of a given (m,ω, β) in an an-
nular region of index nj are expanded in Bessel functions Jm(kjr) and Ym(kjr), with
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Fig. 3. Guided modes supported by a hollow OmniGuide fiber of radius R = 2a: red
lines are for TE and HE modes, while blue is for TM and EH modes. In black is the
light line (ω = cβ), and the solid blue regions represent the continuum of modes
that propagate within the multilayer cladding. Only the first three modes in each
band gap are labeled.

kj ≡
√

n2
jω

2/c2 − β2. At each interface, the coefficients are related by a 4× 4 transfer
matrix that matches boundary conditions.3 The product of all these transfer matrices
yields a single matrix relating the fields in the core to those in the outermost cladding.
Then, by application of appropriate boundary conditions, the βn wavevectors of the
various modes can be found; this is discussed in more detail by Sec. 4 below.
Here, we are primarily interested in the modes that lie within the band gap of the

one-dimensional Bragg mirrors. Such modes must decay exponentially with r in the
cladding, and therefore are truly guided modes in the limit of infinitely many cladding
layers (the case of finite layers is considered in Sec. 4). Most of these modes lie above
the ω = cβ light line, and thus propagate within the hollow core in much the same
way as the modes of a metallic waveguide. It is also possible, however, for modes to lie
beneath the light line and yet inside the band gap, in which case they are surface states
localized around the core/cladding interface—we discuss this possibility further below.
In Fig. 3, we show the computed guided modes of the OmniGuide fiber with core-

radius R = 2a and the abovementioned planar-mirror parameters. These modes are at
nearly the same frequencies as the metallic waveguide modes of Fig. 2, with the one-
dimensional bandgaps simply superimposed. In the dielectric waveguide, the modes are
only purely TE and TM for m = 0, but for m �= 0 they are strongly TE-like or TM-like,
and are called HE and EH, respectively. (When a mode enters the second gap, we add
a prime superscript.) Moreover, because these modes are so strongly confined within
the core, and have the same orthogonality relationship as in a metal waveguide (see the
appendix), the field patterns must also be nearly identical. We consider this analogy in

3The transfer matrix of Eq. (37) in [3] is erroneous for m �= 0; we hope that this apparent typo-
graphical mistake will be corrected by a future erratum.
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R 

Fig. 4. An OmniGuide fiber with core radius R = 30a, the parameters that we
employ in the remainder of this paper. The omnidirectional mirror here comprises
17 layers, starting with a high-index layer, with indices 4.6/1.6 and thicknesses
0.22a/0.78a, respectively. (The omnidirectional mirror is surrounded by some coat-
ing for mechanical support; this layer is not shown to scale.) We choose a = 0.434µm,
so that the lowest dissipation losses occur roughly at λ = 1.55µm.

greater detail in a later publication [21], as well as in subsequent sections on losses and
bends.

2.2 A Large-core OmniGuide fiber

The above calculations yielded the modes of an OmniGuide fiber for a radius R = 2a.
This small radius has the advantage of supporting only a few modes, which are easy
to plot and understand in their entirety, and even has a single-mode frequency range.
The analogy with metallic waveguides, however, tells us that this may not be the most
desirable regime for fiber operation. In this section, we motivate the use of larger,
ostensibly multi-mode cores for OmniGuide fibers, and describe the fiber parameters
that we will use for subsequent computations in this paper.
In metallic waveguides, the lowest-loss mode is TE01, and its ohmic losses decrease

as 1/R3 [16,17]. Moreover, the differential losses between TE01 and other modes create
a modal-filtering effect that allows these waveguides to operate in an effectively single-
mode fashion. On the other hand, for large core radii (high frequencies), losses become
dominated by scattering into other closely-spaced modes, especially into the degenerate
TM11 mode via bends, and it was found that the optimal radius was in the range of
4λ− 11λ [17].
Similar results hold for OmniGuide fibers: the lowest-loss mode is TE01, and many

of its losses fall off as 1/R3 (for much the same reasons as in metallic waveguides). Like
the metallic waveguides, and unlike silica fibers with their small material contrasts, we
demonstrate a strong modal-filtering effect based on the degree of confinement in the
core. Also as before, inter-modal scattering worsens with increasing R. (We show that
bending is less of a problem than in metallic waveguides, however, since the dielectric
cladding breaks the TE01/TM11 degeneracy.) Thus, for the example OmniGuide fiber
that we use in the remainder of this paper, we choose a core radius of R = 30a, as
depicted in Fig. 4. The point of lowest TE01 dissipation losses that we compute in
Sec. 6.1 then lies at a frequency of ω ∼= 0.28 ·2πc/a, so if we make this correspond to the
standard λ = 1.55µm of telecommunications, we have a = 0.434µm. Equivalently, R =
13.02µm = 8.4λ, in the favorable range for the metallic-waveguide analogy.4 Throughout

4As a positive side-effect, we show that such a core radius brings chromatic dispersion down into a
range comparable to that of single-mode silica fibers...although, because of the low nonlinearities, we

(C) 2001 OSA 17 December 2001 / Vol. 9,  No. 13 / OPTICS EXPRESS  754
#37483 - $15.00 US Received November 09, 2001; Revised November 30, 2001



−20 0 20

−30

−20

−10

0

10

20

30

x (a)

y 
(a

)

EH
11

−20 0 20

−30

−20

−10

0

10

20

30

x (a)

y 
(a

)

TE
01

Fig. 5. Transverse electric-field distributions in the OmniGuide fiber of Fig. 4 for
the TE01 mode (left) and the EH11 mode (right), which have β = 0.27926 · 2π/a
and β = 0.27955 · 2π/a, respectively, at ω = 0.28 · 2πc/a.

this paper, however, we will emphasize scaling laws with R in order to highlight the
effects of differing core sizes.
In order to choose the layer thickness, we employed an approximate quarter-wave

condition. It is well-known that, for normal incidence, a maximum band gap is obtained
for a “quarter-wave” stack in which each layer has equal optical thickness λ/4: dhi/dlo =
nlo/nhi [22]. Normal incidence, however, corresponds to β = 0, whereas the modes of
interest in the OmniGuide fiber lie almost on the β = ω/c light line (in the limit of
R → ∞, the lowest-order modes are essentially plane waves propagating along ẑ). Thus,
we employ layer thicknesses determined by the quarter-wave condition along the light
line of air (similarly applied in [18]):

dhi
dlo

=

√
n2
lo − 1√

n2
hi − 1

(1)

which yields dhi
∼= 0.2176a and dlo

∼= 0.7824a in this case. (Ref. [3] suggests an alternate
method that optimizes the structure for confinement of a given mode, but this yields
essentially the same thicknesses as Eq. (1) for large R.)
As in the R = 2a case, the guided-modes of this R = 30a OmniGuide fiber can be la-

beled by analogy to the modes of an equal-radius metallic waveguide. Two such modes in
the OmniGuide fiber, the lowest-loss TE01 and the linearly-polarized5 EH11 (analogous
to the TM11 mode in a metallic guide) are depicted in Fig. 5. The TE01 mode is circu-
larly symmetric and “azimuthally” polarized ( �E‖ϕ̂)—thus, unlike the doubly-degenerate
EH11 mode (two orthogonal polarizations), TE01 cannot be split into two modes of dif-
fering velocities by fiber imperfections, and is therefore immune to polarization-mode
dispersion (PMD). (See also Sec. 8.) Actually, the mode labeling in an OmniGuide fiber
is more complex than in a metallic waveguide, because sometimes a mode will cross
the light line and become a surface state localized around the core/cladding interface.
When that happens, another mode moves “up” and takes its place; for example, the
TM01 mode crosses the light line at ω ∼= 0.27 ·2πc/a, while the TM02 mode continuously
takes on the core field pattern of TM01. When in doubt, we label a mode as HE or EH

shall argue that such a correspondence is not strictly necessary.
5With our choice of eimϕ ϕ-dependence, the EH11 mode is actually circularly polarized; combined

with its degenerate m = −1 mode, however, one can instead express it as linearly polarized.
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Fig. 6. The (unnormalized) electric field Eϕ for the TE01 mode in the OmniGuide
fiber of Fig. 4. The lower plot displays the same field, but with the vertical scale
exaggerated in order to show the field amplitude in the cladding. The field has a
node near the core interface at R, and so the field amplitude in the cladding is
determined by the slope at that point.

depending upon whether it is dominated by Hz or Ez at r = 0, respectively, and number
the core modes according to their ordering above the light line.

3 Scaling Laws with Core Size

Because of the strong reflectivity of the dielectric mirrors, many of the mode properties
are determined largely by the geometric size R of the core, within which the modes are
confined. Throughout this paper, we thereby derive scaling relations for the different
quantities computed, and in this section we lay the groundwork for those derivations
by presenting basic scalings of the fields and modes. These scaling relations are largely
independent of details such as the precise index contrast that is used, so long as it is
sufficiently large for the metallic analogy to hold, and will provide a broad understanding
of the advantages and tradeoffs of OmniGuide fiber structures. Later in the paper, we
exhibit data to explicitly verify scaling relations derived from those in this section.
In particular, we will focus on the suppression of cladding phenomena for the TE0�

(especially TE01) modes of the fiber. The critical property of TE0� modes is that, by
analogy with a hollow metallic waveguide, they have a node in their electric field (Eϕ)
near r = R [16, 17] as depicted in Fig. 6. It then follows that the amplitude of the
electric field in the cladding is proportional to the slope of Eϕ at R. The form of Eϕ

in the core, however, is simply the Bessel function J1(ξr/R), where ξ(ω) is roughly the
�-th zero of J1. The slope at R is then (J0(ξ)−J2(ξ)) · ξ/2R. Moreover, for our quarter-
wave stack, Eϕ peaks near each of the nhi → nlo interfaces [3]. Thus, not including
any normalization of the J1 amplitude (i.e. Eϕ ∼ 1), we find that the unnormalized
Eϕ in the cladding scales as dhi/R. In addition, for most computations (such as the
perturbation theory described in the appendix), one must normalize the power of the
field: this means dividing �E by an additional factor proportional to

√
mode area ∼ R,
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and so:
normalized TE0� cladding �E ∼ 1

R2
. (2)

Moreover, the area of the field in the cladding is the perimeter ∼ R times some constant
(penetration depth) that depends on the size of the band gap; combined with Eq. (2),
we therefore find:

fraction of
∫

| �E|2 in cladding for TE0� ∼
1
R3

, (3)

and from this we derive many other scaling relations. In contrast, for TM or mixed-
polarization modes with an Er component, the unnormalized field amplitude in the
cladding remains roughly constant with changingR—their fractional | �E|2 in the cladding
then scales as only 1/R, so the cladding has a much greater effect on them.
By general phase-space arguments, the total number of modes in the core must

scale as the area R2. Moreover, in a metal waveguide, the dispersion relations look like
βn =

√
ω2/c2 − ξ2

n/R
2, where ξn are roots or extrema of Bessel functions. Therefore,

far from cutoff (R  ξnc/ω),

mode separation ∆β ∼ 1
R2
; (4)

this has important implications for many of the mode-coupling phenomena discussed
later. Unfortunately, ∆β can be somewhat more complicated in an OmniGuide fiber,
due to the finite field penetration into the cladding and due to the transitions into
surface states and subsequent mode relabelings discussed in the previous section. For
example, consider the case of the EH11 mode, which is degenerate with TE01 in the
metallic limit [16,17]. The degeneracy is broken by the penetration of the fields into the
cladding,6 inducing a small shift ∆β: by perturbation theory, ∆β is proportional to the
amount of EH11 energy in the cladding, ∼ 1/R:

TE01 and EH11 mode separation ∆β ∼ 1
R
. (5)

Testing this scaling relation numerically for λ = 1.55µm, however, we find that this
separation eventually scales as 1/R2 for R � 40a. It turns out that the “fundamental”
HE11 mode has crossed the light line to become a surface state, and EH11 continuously
transitions to being more HE11-like, thus scaling eventually as Eq. (4).

4 Leaky Modes and Radiation Loss

In the preceding discussion, we have neglected a point that may seem important: in
reality, there will be only a finite number of cladding layers in the omnidirectional
mirror. Because of this, and the fact that the modes of interest lie above the light line of
the outermost region, the field power will slowly leak out in a process akin to quantum-
mechanical “tunneling.” This radiation loss, however, decreases exponentially with the
number of cladding layers, and we quantify its smallness explicitly below. As has been
observed elsewhere [11, 13], we show that only a small number of layers is required to
achieve leakage rates well below 0.1 dB/km. Moreover, the radiation leakage strongly
differs between modes, inducing a modal-filtering effect [3, 6] that allows a large-core
OmniGuide fiber to operate in an effectively single-mode fashion.
In the limit of infinitely many cladding layers, the modes in the OmniGuide core

are true confined modes, thanks to the band gap, with discrete real eigenvalues βn

6Such degeneracy breaking can also be understood in terms of the phase shift of a TE/TM polarized
wave upon reflection from the omnidirectional mirror [21].
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(c.f. the appendix). For finitely many layers, modes are no longer truly confined (above
the outermost light line), leading to a continuum of β values with infinitely-extended
eigenstates [3]. The former confined modes become leaky resonances : superpositions of
real-β eigenmodes centered on βn with a width ∆β proportional to the radiative decay
rate αn. Such resonances can be studied directly via the physical real-β continuum, but
a powerful alternative method is the leaky-mode technique, which employs a conceptual
analytic continuation from β to β̃ in the complex plane to satisfy a boundary condition
of zero incoming flux [23]. The power decay rate αn is then given by 2�[β̃n], where
� denotes the imaginary part; we have also verified the correctness of this decay rate
against explicit real-β superpositions as well as by beam-propagation methods (BPM)
[24].
For an OmniGuide fiber, the leaky-mode method is as follows. The transfer-matrix

formulation allows one to compute 2 × 2 matrices M±
m(ω, β) that connect the TE and

TM amplitudes at the origin to the amplitudes of the outgoing (+) or incoming (−)
TE and TM cylindrical waves (Hankel functions) in the outermost region, as a function
of ω and β for a given angular-momentum index m. (For m = 0, the two polarizations
decouple [3].) For a leaky mode, we wish to impose the boundary condition of zero
incoming waves, so that there are no sources at ∞; such a solution exists whenever
there is a zero eigenvalue of M−

m. Therefore, we use the determinant:

fm(ω, β̃) ≡ det
[
M−

m(ω, β̃)
]
, (6)

so that the leaky mode is defined by fm(ω, β̃n) = 0. Once such a β̃n is found for a given
ω, the corresponding eigenvector of M−

m(ω, β̃n) yields the required mixed-polarization
amplitudes. With finitely many layers, the only real roots of fm lie below the light
line of the outermost region;7 above this light line, the incoming and outgoing flux are
equal for real β [3], corresponding to steady-state standing-wave patterns. The small
imaginary part of β̃n above the light line yields the power decay rate αn = 2�[β̃n].
A similar leaky-mode method was previously used for Bragg fibers, albeit with only a
first-order Taylor-expansion approximation for �[β̃n] [5].
For all modes, the radiative decay α decreases exponentially with increasing numbers

of cladding layers, thanks to the exponential decay of fields in the Bragg band gap,
eventually to the point where other losses (e.g. absorption) dominate. At λ = 1.55µm
for this structure, the TE/TM losses decrease by a factor of ∼ 10/5 per cladding bilayer,
respectively. Because of the smaller TM band gap, the losses of mixed-polarization
(m �= 0) modes are eventually dominated by their less-confined TM components. In
Fig. 7, we display the computed radiation leakage rates α for the lowest-loss TE01

mode, the next-lowest loss TE02 mode, and the linearly-polarized EH11 mode to typify
mixed-polarization modes. Like the absorption discussed later, these differential losses
create a mode-filtering effect that allows the TE01 mode to operate as effectively single-
mode, even for large-core OmniGuide fibers, a fact that was also noted in [3,6]. A similar
principle was employed in hollow metallic waveguides [16, 17] to select the TE01 mode.
Note that, as in metallic waveguides, TE02 is not necessarily the mode of greatest
concern—it is more important to consider modes that couple strongly to TE01 via
perturbations, such as those discussed in later sections. From Fig. 7, it is seen that with
only 17 cladding layers the TE01 mode has leakage rates well under 0.01 dB/km, and
even EH11 has decay lengths of meters, corresponding to �[β̃n]/�[β̃n] of ∼ 10−13 and
∼ 10−9, respectively. Thanks to these low losses, the modes can be treated as truly

7Below the light line of the outermost region, the incoming-wave Hankel function instead becomes
an exponentially-growing function, but its coefficient must be zero all the same.
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Fig. 7. Radiation leakage through a finite number (17) of cladding layers in the
OmniGuide fiber of Fig. 4. The lowest-loss mode is TE01 (solid blue) and the next-
lowest is TE02 (red dots), while the linearly-polarized EH11 mode (black circles)
typifies the higher losses for mixed-polarization modes due to the smaller TM band
gap.

bound for most analyses (e.g. dispersion relations and perturbation theory), with the
leakage rates at most included as an independent loss term.
The radiation losses are proportional to the field amplitude | �E|2 in the cladding,

which goes like 1/R4 for TE0� from Eq. (2), multiplied by the surface area (which scales
as R). Thus,

TE0� radiation leakage α ∼ 1/R3, (7)

the same as the scaling of TE0� ohmic losses in a hollow metallic waveguide [16, 17]. In
contrast, because of their lack of a node near the boundary, TM and mixed-polarization
radiation losses scale only as 1/R.
By conservation of energy, one can also express this αn as P̃+

n /P̃n, where P̃+
n is

the radially-outgoing power of the leaky mode per unit length and P̃n is its forward-
propagating power in the core. It has been suggested [13] that one instead use α′

n ≡
P+

n /Pn based on the powers at the real-βn resonance peak, but one can show that this
formulation is too small by a factor of 4. In particular, denote the outgoing/incoming
wave amplitudes at ω by S±(β). From above, S− has a root at β̃n

∼= βn + iα/2, so S−

can be Taylor-expanded: S−(β) ∼= s ·(β−βn−iα/2) for some s. The outgoing amplitude
S+ can then be inferred by time-reversal symmetry, S+(β) ∼= s∗ · (β − βn + iα/2), and
so we see immediately that P̃+

n ∼ |S+(βn + iα/2)|2 ∼= 4|S+(βn)|2 ∼ 4P+
n , and thus

α ∼= 4α′. (We have also verified this factor of 4 by explicit computation of fluxes.)
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Fig. 8. Group-velocity (chromatic) dispersion of the TE01 mode in both the Om-
niGuide fiber of Fig. 4 (solid blue) and a hollow metallic waveguide with the same
core radius (green circles).

5 Group-velocity Dispersion

Given a dispersion relation β(ω), one important quantity is the group-velocity dispersion
D (the rate at which pulses spread), canonically defined as [15]:

D ≡ − ω2

2πc
d2β

dω2
, (8)

in units of ps/(nm · km): the pulse-spreading (ps) per km of propagation per nm of
∆λ. This can be computed exactly from the function f of Eq. (6), which defines the
dispersion relation implicitly by f(ω, β) = 0. The group velocity is thus given by v ≡
dω/dβ = −fβ/fω, where the subscripts denote partial differentiation, and one thereby
finds that d2β/dω2 = d(1/v)/dω = 2fωfωβ/f

2
β − fωω/fβ − f2

ωfββ/f
3
β . We evaluate all of

these derivatives analytically by differentiating the transfer matrices. We also considered
material dispersion (n varying with ω) by the same methods, but we found that this has
a negligible effect (due to the small field penetration into the cladding). For example,
assuming that the cladding has the same dn/dω and d2n/dω2 as silica at 1.55µm,
the contribution of material dispersion is less than 0.1 ps/(nm · km) over most of the
bandwidth. What remains is the waveguide dispersion, which stems from the geometry
of the core as well as the variable penetrability of the cladding, Goos-Hänchen shifts [22],
etc., all of which are taken into account by differentiating f . The resulting dispersion
as a function of wavelength is plotted in Fig. 8 for the TE01 mode of the R = 30a
OmniGuide fiber.
For comparison, we also plot the dispersion of the TE01 mode in an equal-radius hol-

low metallic waveguide, given by:Dmetal = −ω2ξ2/(2πc3β3R2), where β =
√

ω2/c2 + ξ2/R2

and ξ = 3.8317 · · · is the first non-zero root of the J1 Bessel function. Except near the
edges of the band gap, the dispersion is very similar to that of the metallic waveguide—
that is, D is dominated simply by the core shape—and D ∼= 12 ps/nm · km at λ =
1.55µm. From the metallic dispersion relation, we can also conclude that D ∼ 1/R2.
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As we discuss in the next section, the practical implications of dispersion in an Om-
niGuide fiber are quite different than in ordinary fibers, due to the absence of nonlinear
effects. Because dispersion no longer interacts with nonlinearities, it can in principle be
completely compensated after any distance of propagation, allowing one to put all dis-
persion compensation at the end of a fiber link, as well as to tolerate higher dispersions.
Conversely, operating at or near a point of zero dispersion will no longer exacerbate
four-wave mixing noise.
Another important consideration is the relative dispersion slope (RDS), as measured

by (dD/dλ)/D; this quantity must ideally be matched in any dispersion-compensation
system. For the OmniGuide fiber above, the RDS is around 0.0007nm−1. This is 15–30
times smaller than the RDS of contemporary TrueWave-RS (0.010nm−1) and LEAF
(0.021nm−1) fibers, and smaller slopes are typically easier to achieve in dispersion-
compensating fibers [25].

6 Suppression of Absorption and Nonlinearities

In this section, we compute the effect of absorption losses and nonlinearities in the
cladding materials of an OmniGuide fiber. We show that these effects are strongly
suppressed for the TE01 mode, allowing highly lossy and nonlinear materials to be
employed—greatly broadening one’s choices for high-index materials. Moreover, we will
see that there is the potential of greatly surpassing even the properties of silica fibers.
Absorption and nonlinearites correspond to tiny shifts ∆ε in the dielectric constant

of the materials, and can therefore be treated by perturbation theory, as described in
detail by the appendix. This common technique allows one to compute the shift ∆β
due to a small perturbation, using only the unperturbed modes (computed earlier via
transfer matrices). We have developed a new formulation of perturbation theory for use
in this and subsequent sections, in explicit analogy with quantum mechanics, and use
the Dirac notation Â |n〉 = βnB̂ |n〉 for the vectorial Maxwell eigenproblem in the modes
|n〉. A perturbation is expressed as a shift ∆Â in the eigen-operator, and the first-order
shift in β is then ∆β

(1)
n = 〈n|∆Â|n〉 from Eq. (43). The ∆Â for a small ∆ε is given by

Eq. (48) in the appendix.

6.1 Absorption Loss

For absorption losses (also possibly including Rayleigh scattering), ∆ε is a small imagi-
nary part added to ε, representing the (material-dependent) dissipation rate. Substitut-
ing Eq. (48) into Eq. (43), the resulting (purely imaginary) ∆β indicates the decay rate
of the mode. Such a first-order perturbation method for dissipation losses, derived by
various means, has often appeared in previous works [26–31]. The losses of a material
are usually specified as a power dissipation rate α0 in units of e.g. dB/m; after some
algebra, one finds that using ∆ε = iα0 · 2c√ε/ω produces an �[∆β(1)] in Eq. (43) that
is exactly the power dissipation rate α in the same units as α0.
Here, we calculate the losses of the TE01 mode in our example OmniGuide fiber by

assuming that the core is lossless, and that both the high and low-index cladding materi-
als have the same dissipation rate α0. Furthermore, we divide the computed dissipation
rate α by α0, yielding the dimensionless, material-loss independent absorption suppres-
sion coefficient of the mode. This is done for each frequency ω across the band gap,
yielding the plot in Fig. 9. Thus, the cladding losses are suppressed by more than four
orders of magnitude over most of the bandwidth, a result that will be better understood
from the scaling-law arguments in Sec. 6.3. For comparison, we also show the next-lowest
loss TE02 mode, as well as the linearly-polarized EH11 (exemplifying the larger cladding
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Fig. 9. Absorption losses due to the cladding materials the OmniGuide fiber (with
core radius 30a), as a fraction of the bulk cladding losses. The lowest-loss mode is
TE01 (solid blue) and the next-lowest is TE02 (red dots), while the linearly-polarized
EH11 mode (black circles) typifies the higher losses for mixed-polarization modes
due to the smaller TM band gap.

penetration for modes with TM components).8 As was mentioned earlier, such a loss
differential creates a mode-filtering effect that should allow single-mode-like operation.9

(Surface states and guided modes outside the band gap, i.e. propagating within the
cladding region, will experience essentially the attenuation of the bulk cladding mate-
rials and will be even more strongly filtered out.) Moreover, even if the cladding has
losses a thousand times greater than silica’s ∼ 0.2 dB/km, the TE01 losses can be lower
than the losses of silica fibers.

6.2 Nonlinearities

Another important problem in optical fibers is that of Kerr nonlinearities. Here, the
index n of the material varies as a function of electric-field strength: n′ ≡ n + n2| �E|2,
where n2 = 3

8nχ
(3) is the (small) “nonlinear index coefficient” of the material(s).10 Thus,

to first order in n2, one has:

∆ε = 2nn2

∣∣∣�E∣∣∣2 . (9)

Kerr nonlinearities cause several problems in fiber systems: self/cross-phase modulation
(SPM/XPM), where the energy at one frequency shifts the β at the same/another
frequency; and also four-wave mixing (FWM), in which energy at one frequency leaks

8The strange shape of the EH11 curve in the plot is related to the fact that this mode labeling is
not exact for OmniGuide fibers; in fact, “EH11” begins to make a transition to HE11-like behavior in
the middle of the band.

9Bessel-function afficionados can also show that the ratio of TE0� to TE0�′ losses is nearly (ξ�/ξ�′)
2,

where ξ� and ξ�′ are the corresponding roots of J1. This ratio is ∼ 3.35 for TE02 to TE01.
10Often, one instead uses n′ = n+n2I, where I ∼ n| �E|2 is the intensity of light; our analysis remains

the same except for the extra factor of n.
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Fig. 10. The TE01 mode’s suppression factor for cladding nonlinearities in the Om-
niGuide fiber of Fig. 4, relative to nonlinearities that include the core.

into another frequency [15]. SPM and XPM interact with dispersion to limit dispersion-
compensation schemes, and FWM causes noise/crosstalk between channels. Our concern
here is not to compute these effects per se, but rather to define the limits in which they
may be neglected.
The strength of nonlinearities in a fiber is given by a nonlinear lengthscale LNL,

defined as the inverse of the SPM phase shift ∆β; this is the lengthscale at which SPM
and XPM become significant, and also appears as a scaling coefficient in the FWM noise
[15]. As is seen below, LNL is inversely proportional to the mode power P (to first order),
so it is conventional to instead define the nonlinear strength γ ≡ 1/(PLNL) = ∆β/P ,
which is a power-independent quantity proportional to the strength of nonlinear effects
in the fiber.
In order to compute γ, we substitute Eq. (9) into Eqs. (48,43), solving for the first-

order shift ∆β(1). This ∆β(1) is proportional to P through the field strength | �E|2 in
Eq. (9). (An equivalent expression was derived by other means, for both the scalar and
vectorial cases, in previous works [32–34].)
We now apply the above methods to compute the nonlinear strength γ of the TE01

mode in our OmniGuide fiber, assuming that the cladding materials all have some
fixed n2. Instead of choosing a particular material n2, we instead calculate a cladding
nonlinearity suppression factor—we divide γ by a γ0, with the latter computed by
supposing that both the cladding and the core have the n2 nonlinearity. The results,
plotted in Fig. 10, show that the cladding nonlinearities are suppressed by more than
eight orders of magnitude over much of the bandwidth. Thus, the nonlinearities of this
OmniGuide fiber will be dominated by the nonlinearities of air rather than those of
the cladding, even for materials thousands of times more nonlinear than silica. Gases
have Kerr constants almost 1000 times weaker than that of silica—combined with the
fact that the core area here is almost 10 times larger than the effective area of a typical
silica fiber, this implies nonlinearities in the OmniGuide fiber that are almost 10,000
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times weaker than those of silica fibers. Such low nonlinearities would open dramatically
new areas for fiber operation: for example, high powers, closely-spaced channels and/or
low/zero dispersion without regard for FWM,11 use of non return-to-zero (NRZ) formats
at high bit rates, and dispersion compensation at larger intervals without regard for
SPM. A better understanding of this nonlinearity suppression can be found in the scaling
laws derived in the following section.

6.3 Scaling Laws

The scaling laws for absorption loss and nonlinearities, as a function of core radius R,
can be derived straightforwardly from the results in Sec. 3. In particular, the 〈n|∆Â|n〉
integral that determines the absorption loss has an integrand proportional to the fraction
of | �E|2 in the cladding, which scales as 1/R3 from Eq. (3), so:

TE0� cladding absorption ∼ 1
R3

. (10)

This is a familiar result, since it is the same as the scaling of the TE01 ohmic dissipation
losses in a hollow metallic waveguide. The scaling for the nonlinear strength γ is found
by similar arguments. Here, however, there is an additional factor of | �E|2 from Eq. (9),
and thus 1/R4 from Eq. (2). The nonlinear strength γ of the cladding therefore scales
like 1/R7! The nonlinear strength γ0, when one adds nonlinearities to the core, scales
inversely with the area R2 as in an ordinary fiber, so:

TE0� cladding nonlinearity
γ

γ0
∼ 1

R5
. (11)

It is because of these rapid 1/R3 and 1/R5 scalings that the cladding absorption and
nonlinearities can be suppressed so strongly for TE01 in a large-core OmniGuide fiber.
To demonstrate these scaling laws explicitly, we plot the absorption and nonlinear sup-
pression coefficients as a function of R in Fig. 11, superimposing the predicted scaling
laws.

7 Waveguide Bends

A shallow bend in the waveguide axis, with unchanged waveguide cross-section12 and
an instantaneous radius of curvature Rb  R, can be thought of as a small perturba-
tion to the straight waveguide. The modes of the straight waveguide propagate almost
unchanged around the bend, with a slight coupling between them due to the bending—
such coupling, or scattering, is described via the z-dependent perturbation theory of the
appendix. After computing the strength of such coupling terms, we first consider mode
conversion due to coupling of guided modes for short bends in which they are effectively
lossless. Then, in Sec. 7.3, we consider the effect of coupling to lossy modes over longer
distances, which causes an effectively increased loss rate for TE01.

7.1 The Bend Perturbation Operator

The unperturbed eigenmodes are coupled in a bend by the change ∆Â in the eigen-
operator, produced by transforming the field-propagation equations into the curvilinear
coordinates of the bend. In order to find the propagation equations for the field on the

11FWM noise is proportional to γ2/(∆β2+α2), where the α2 term is usually negligible [15]. However,
with nonlinearities 10,000 times weaker than in silica, α = 0.01 dB/km is sufficient to suppress FWM
even in the limit of ∆β = 0 (zero dispersion and/or channel spacing).

12Bending can also create a stress-induced ∆ε in the cladding material, which we do not consider
here since so little of our field penetrates into the cladding.
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Fig. 11. Scaling of the cladding absorption and nonlinearity suppression factors for
a core radius R varying from 7a to 30a (taking the minimum over the TE01 band at
each radius). Hollow squares/circles show the computed values, and the solid lines
display the values predicted by starting from the 30a value and applying the scaling
laws.

cross-section of a curved waveguide, we write Maxwell’s equations in cylindrical coordi-
nates (ρ, θ, ζ) , make the correspondence (x, y, z)→ (Rb − ρ, ζ, Rθ) where −x̂ points to
the center of curvature and x = 0 bisects the waveguide, and recompute Eq. (38) of the
appendix. Then, after some algebra, we find the mode-coupling coefficient:

〈
n′ ∆Â n

〉
= −

〈 E′
x

E′
y

E′
z

H ′
z

H ′
y

H ′
z

ωx

cRb


ε

ε
−ε

µ
µ

−µ


Ex

Ey

Ez

Hz

Hy

Hz

〉
(12)

As far as we can determine, this diagonal form for the bend-coupling operator was
not previously known—although with some effort it can be shown to be equivalent to
expressions derived by other means in earlier works, for example [35]:〈

n ∆Â n′
〉

= −βn′

∫
x

Rb

(
�E∗

t × �H ′
t + �E′

t × �H∗
t

)
(13)

− i

Rb

∫ (
E∗

yH
′
z −H∗

yE
′
z

)
.

The simple form of Eq. (12), cast into cylindrical coordinates x = r cosϕ, immedi-
ately yields a well-known result when the waveguide has cylindrical symmetry. Here,
the modes can be chosen with a ϕ dependence of the form eimϕ, so:〈

n′;m′ ∆Â n;m
〉

= (r integral) ·
∫ 2π

0

ei∆mϕ
(
eiϕ + e−iϕ

)
dϕ/4π

= (r integral) · δ∆m,±1/2, (14)
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where ∆m = m−m′. In other words, for a waveguide with a cylindrical symmetry, there
is a selection rule: a bend can only directly couple modes with |∆m| = 1 [35]. From
this selection rule, it follows that a mode cannot couple with itself, and the lowest-order
correction to β is therefore of order 1/R2

b , from Eq. (44) [36].

7.2 Bends in an OmniGuide Fiber

In a conventional optical fiber, there is only a single guided mode, so all of the coupling
in a bend is to the radiation continuum, which lies at a nearby β since the index-
contrast is small. In contrast, the OmniGuide fiber here is highly multi-mode, with
many other guided modes at β values nearby to TE01 (within ∆β = 10−3 ·2π/a); at the
same time, the cladding modes (analogous to the radiation continuum) lie at distant β
(∆β � 0.1 · 2π/a) thanks to the large gap. Thus, since mode coupling varies inversely
with ∆β, OmniGuide-fiber bend effects will be dominated by coupling/scattering into
other guided modes in the core. In this case, we can employ Eq. (46) to compute the
scattered power, which is therefore proportional to (Rb∆β)−2. This scattered power will
be dominated by the closest m = 1 mode, and is significant when Rb approaches 1/∆β.
Moreover, we can be guided once again by the analogy with hollow metallic waveg-

uides. There, as was discussed in Sec. 3, the TE01 mode is actually degenerate (∆β = 0)
with another mode, TM11. The selection rule allows these two modes to couple, and
therefore can produce significant scattering for any bend radius. Fortunately, the Om-
niGuide cladding breaks this degeneracy, but the strongest scattering is still commonly
due to the EH11 mode (the analogue of TM11), which has a ∆β ∼ 10−4 ·2π/a ∼ 10cm−1

for R = 30a. Actually, even in the OmniGuide fiber, EH11 intersects TE01 at a single
degeneracy point (here, at λ = 1.698µm)—the vicinity of this point must therefore be
excluded from the usable bandwidth. From the scaling laws of Eqs. (4,5), however, we
see that HE1� modes may have smaller ∆β for large R—for the present structure, the
HE11 and HE12 modes make a significant contribution (often 50%) to the bend losses
for many wavelengths.
We compute the minimum bending radius R0.1% for which the worst-case scattered

power from Eq. (46) is 0.1%. As shown in the appendix, this is ostensibly independent
of the number of turns—the scattered power of Eq. (46) simply oscillates with bending
distance. There are additional loss mechanisms for large numbers of turns that we
consider below, however. In this computation, we include the EH1� and HE1� modes
for � = 1, 2, 3; the contribution of other modes is negligible. The results are plotted in
Fig. 12. To find the losses for a different bend radius Rb, one would then scale 0.1% by
(R0.1%/Rb)2 (although this fails as the losses approach 100% and perturbation theory
is no longer valid). Furthermore, given the ∆β scaling from Eq. (5) and the fact that
the integrand of Eq. (12) yields an additional factor of R, we find that:

minimum bend Rb for 0.1% losses, R0.1% ∼ R2. (15)

For large R, however, if coupling to HE modes with ∆β ∼ 1/R2 begins to dominate,
one has instead R0.1% ∼ R3.

7.2.1 Long-distance bends: effects of lossy modes

Matters become more complex when the bend continues for a long distance, where one
must take into account the lossiness of the modes. (Random variations in the bend could
also be considered, by the techniques of Sec. 8.3.) In the derivation of Eq. (46), parasitic
waves scattered at earlier positions interfere with waves scattered at later positions due
to the phase mismatch ∆β. If the parasitic mode is lossy, however, the wave from the
earlier position may have decayed away before it can interfere. Qualitatively, then, one
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Fig. 12. Minimum bending radius R0.1% to achieve 0.1% worst-case scattering losses
for the TE01 mode in the OmniGuide fiber of Fig. 4. Conversely, the losses for a given
bending radius Rb are 0.1% · (R0.1%/Rb)

2. The sharp peak (actually a divergence)
in R0.1% is due to the point of degeneracy between TE01 and EH11.

expects that the scattering will follow Eq. (46) for roughly a decay length of the mode,
and will then “restart” once the original parasitic modes have decayed. Quantatitively,
we estimate the effective decay rate of the “hybridized” curved-waveguide eigenmode by
computing its new complex β̃ from Eq. (44)—simply substituting the complex βn+iαn/2
into the equation, where αn is the power decay rate of |n〉. For ∆α � ∆β, this yields:

∆α(2)
n

∼=
∑
n′ �=n

∣∣∣〈n′ ∆Â n
〉∣∣∣2

∆β2
n′n

(αn′ − αn) , (16)

the lowest-order shift in the decay rate.13 This equation corresponds to taking the mean
scattering losses from Eq. (46) once every 2/∆αn′n decay length. (If the modes both
decay at the same rate, the field powers simply scale with distance and the interference
proceeds as before.) When |n〉 is TE01, we will have αn′  αn as in Figs. 7 and 9.
For example, at λ = 1.55µm in our case of the R = 30a OmniGuide fiber with

17 layers, the radiation decay length 2/α of EH11 is 60m from Fig. 7, with a bend
radius R0.1% of 20cm for 0.1% losses. Then, to induce a decay rate ∆α(2) in TE01 of
only 0.01 dB/km, one needs the average bending radius to be � 40cm (neglecting the
coupling to modes besides EH11).14 If this were too large, or if EH11 were more lossy
(say, due to a smaller bandgap), then one could simply add more periods to the Bragg
mirrors until the EH11 radiation losses were sufficiently low.

13The fact that this decay rate is second-order in the perturbation 1/Rb was also found in hol-
low metallic waveguides [16, 17, 37], by explicitly solving for the eigen-field correction in the curved
waveguide.

14In an undersea cable, the fiber spirals continuously within a central core, to prevent the fiber
from bearing any of the cable tension—a typical radius of bending curvature would be around 50cm
(corresponding to 5% fiber slack and a 5cm core radius).
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8 Elliptical and Uniform-Scaling Perturbations

In this section, we apply perturbation theory to treat elliptical and uniform-scaling
perturbations of the fiber cross section, and develop a general form for the perturbation
operator. To begin with, we consider the effect of a constant ellipticity/scaling along
the length of the fiber. For doubly-degenerate linearly-polarized m = 1 modes such
as EH11, our formulation provides a quantitative way to understand ellipticity-induced
birefringence and polarization mode dispersion (PMD). Here, however, in the case of
m = 0 singlet modes (such as TE01) in an OmniGuide fiber, the main effect of ellipticity
is to increase radiation losses by coupling to other, much lossier, modes. Our expressions
apply even for large index contrasts within the fiber, and the validity of the perturbation
theory depends only on the amount of ellipticity/scaling.
There has been much previous research on estimating such quantities as the local

birefringence induced by perturbations in the fiber profile, and such analyses can be
found in many standard textbooks [23, 38]. Most such treatments, however, are geared
toward understanding low-contrast, weakly guiding systems such as the ubiquitous sil-
ica fiber, and are not directly applicable to high-contrast systems such as OmniGu-
ide fibers, as well as e.g. photonic-crystal fibers or lithographic integrated waveguides.
While several approaches have been suggested for the perturbative treatment of such
high index-contrast systems [23, 39–43] there is still no consensus on the best form for
such an analysis.
Ellipticity and scaling correspond to moving dielectric-interface boundaries, and one

way to analyze this would ostensibly be to find the change ∆ε and substitute it into the
general formula of Eq. (48). However, as discussed in Sec. 8.2 and in analyzed in detail by
[44], this formulation yields incorrect results (compared to exact calculations) for large
contrasts ∆ε, due to the changing boundary conditions on the fields. Instead, we employ
a different approach that maintains the field boundary conditions at the interfaces: we
rescale the coordinates to xs = x(1 + δx), ys = y(1 + δy) and compute the modified
Â of Eq. (38). In particular, we focus on two cases: a uniform scaling δx = δy, and an
elliptical scaling δx = −δy. This change of coordinates alters the curl operations and
induces a perturbation ∆Â. Then, as before, we use z-independent perturbation theory
to compute the corrected β of the perturbed eigenmodes, the birefringence, and the
induced losses. To treat scaling or ellipticity that vary along the propagation direction,
z-dependent perturbation theory can be employed to calculate the coupling/scattering.
We believe that this is the first general perturbative treatment for fiber ellipticity that
is capable of handling large index contrasts.

8.1 Elliptical perturbations

We first consider the case of a uniform elliptical perturbation via the rescaling δ ≡ δx =
−δy, and define η ≡ δ/(1+ δ) ∼= δ. In this case, we find after some cumbersome algebra
[44] that the perturbation matrix elements take the following form in a cylindrical fiber:

〈
n′;m′ ∆Â n;m

〉
=

〈 E′
r

E′
ϕ

H ′
r

H ′
ϕ

ω

c
η


−ε ±iε
±iε ε

−µ ±iµ
±iµ µ


Er

Eϕ

Hr

Hϕ

〉
δm′,m∓2, (17)

where we have expressed the transverse fields in their cylindrical components, and the
final Kronecker delta expresses a selection rule that only |∆m| = 2 modes can directly
couple under this form of perturbation.
In the case of a singletm = 0 mode, e.g. the TE01 operating mode of the OmniGuide

fiber, the introduction of such ellipticity leads to only a second-order shift in the real
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part of β from Eq. (44), as well as increased losses from Eq. (16). Because a single mode
can never be split into two modes, the birefringence and consequently the PMD for any
m = 0 mode is zero.
Although the scaling of Eq. (17) is non-obvious, an empirically correct result is

obtained here by postulating that an expression like Eq. (48) could be found even for
large index contrasts: i.e. that the matrix element scales as the field integral over the
perturbation ∆ε’s area. This area scales as δ · R, while the normalized field-amplitude∣∣∣�E∣∣∣ inside the perturbation scales as 1/R2 for TE0� from Eq. (2). On the other hand,
this field amplitude is ∼ 1/R for m �= 0 modes. Thus, the following scaling is obtained:〈

TE0� ∆Â m = ±2
〉

∼ δ

R2
. (18)

8.1.1 Scaling relations and increased losses for TE0� modes

Given the matrix element of Eq. (17) and the scaling relation of Eq. (18), we can find
the form of the shift in the complex propagation constant β̃ and the attenuation rate α
via Eqs. (16, 44). The latter equations are inversely proportional to the mode separation
∆β, which scales as 1/R2 from Eq. (4). Thus:

�
[
∆β̃(2)

]
∼ δ2

R2
. (19)

We consider the imaginary part (the attenuation rate) separately via Eq. (16). There,
one divides by ∆β2; on the other hand, we showed that the radiative/dissipative decay
rates α of the m �= 0 modes scale as 1/R, and thus:

∆α(2) = 2�
[
∆β̃(2)

]
∼ δ2

R
. (20)

These two scaling relations are verified in Fig. 13, where we plot the real and imaginary
parts of ∆β̃(2) as a function of core radius R for the OmniGuide TE01 mode with 1%
ellipticity. The large additional loss induced by the ellipticity comes from the coupling to
mixed-polarization modes that have large radiation losses, due to the smaller TM band
gap—this can be ameliorated, however, by increasing the number of cladding layers, as
discussed below.
Another important result for the radiation loss of the elliptically perturbed TE01

mode is its scaling with respect to the number of layers in the omnidirectional mirror.
This scaling is depicted in Fig. 14. For comparison, we also show the radiation losses of
the unperturbed TE01 and HE21/EH21 modes, where the latter contribute the dominant
coupling terms in Eq. (16) for ∆α(2). As the number of layers in the mirror increase,
the radiation losses of HE21 and other m = 2 modes become exponentially greater than
the TE01 losses, due to the smaller TM band gap. Thus, for a large number of layers,
TE01 losses are expected to be totally dominated by the losses via ellipticity-coupling
to the m = 2 modes, and moreover will have the same slope as the α of the TM modes.

8.2 Uniform-scaling perturbations

By the same methods, we can find the analogous perturbation matrix elements in the
case of uniform rescaling of the fiber, δ ≡ δx = δy and η ≡ δ/(1 + δ) ∼= δ. Although we
do not use this result directly here, uniform scaling has the advantage of being easily
checked against an exact transfer-matrix computation. We have done this, computing
∂β/∂η and ∂2β/∂η2 via Eqs. (43,44), and found that our perturbation theory yields the
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Fig. 14. The estimated radiative loss α+∆α(2) of the TE01 mode at λ = 1.55µm for
the OmniGuide fiber of Fig. 4 with an elliptical perturbation, plotted versus the
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correct results for all modes. In contrast, using Eq. (48) to compute ∂β/∂η is found to
produce the correct results only for pure TE m = 0 modes—the reason for this is that
the changing discontinuity condition on Er makes the unperturbed modes a poor basis
for TM and mixed-polarization modes, causing significant errors in high index-contrast
systems [44].

8.3 Nonuniform stochastic elliptical perturbations

Elliptical deformations of an OmniGuide fiber can cause two sorts of losses. Above,
we estimated the losses that come from the ellipticity per se, due to the induced mode
mixing, assuming that TE01 was adiabatically transformed into the analogous elliptical-
fiber mode. As a fiber is drawn, however, there will be stochastic variations in the
ellipticity along the fiber length, and this will create scattering losses in which power
is transferred non-adiabatically from TE01 to other modes. Assuming that there is no
systematic ellipticity, one can derive coupled-power equations averaged over an ensemble
of possible stochastic ellipticity realizations. These equations for the transfer of power
between modes take the form of a well known master equation [45]. Defining Pn as a
relative power in the n-th mode (with decay rate αn), one has:

∂Pn

∂z
= −αnPn +

∑
m

Mnm(Pm − Pn), (21)

where the coupling (transition probability)Mnm is defined as follows. First, we separate
the perturbation ∆Â of Eq. (17) from the ellipticity δ by ∆Â ≡ δ · ∆â, and suppose
that the ellipticity δ(z) is a stochastic function with zero mean and an autocorrelation
C(z) ≡ 〈δ(ζ)δ(ζ − z)〉. Defining the Fourier transform Ξ(κ) ≡ ∫ C(z)e−iκzdz, we arrive
at [45]Mnm ≡ | 〈n|∆â|m〉 |2Ξ(βn−βm). One must choose a form for the autocorrelation
function C(z), and here we assume that it is a Gaussian with rms ellipticity δ0 and a
correlation length Lc(δ0): C(z) = δ2

0e
−[z/Lc(δ0)]

2
. For stochastic ellipticity from fiber

drawing, a typical δ0 ∼ 1% [46], and it is likely that Lc � 10cm.
The linear equations of Eq.(21) can be solved by finding their eigenvectors �pj and

eigenvalues−α̃j , where the effective decay rates α̃j are real as long as the autocorrelation
C(z) is real-symmetric, and they can also be shown to be non-negative [45]. These α̃j are
the effective decay rates, and after a long distance the decay will be dominated by the
smallest eigenvalue α̃0 and its corresponding equilibrium power distribution �p0. In the
case of the OmniGuide fiber, elliptical perturbations of Eq. (17) couple the TE01 mode
predominantly to HE21. Using these two modes and Eq.(21), we compute the effective
loss rate α̃0 as a function of Lc for the OmniGuide fiber with δ0 = 1% at λ = 1.55µm.15

The results, presented in Fig. 15, show that as long as Lc � 1.6mm, the scattering into
the the lossier HE21/EH21 modes yields TE01 losses α̃0 < 0.01 dB/km. In the insert,
we plot the relative power in the modes as a function of Lc. For Lc � 1.6mm ∼ 1/∆β,
the fractional power in the parasitic modes is less than 10−4.

9 Uncorrelated Roughness Losses

Another potential source of losses in any fiber is interface roughness and, since such ef-
fects worsen with increasing index contrast, they may be a practical concern in OmniGu-
ide fibers. In this section, we make an order-of-magnitude estimate of roughness losses
in an OmniGuide fiber, assuming uncorrelated small scatterers on the core/cladding
interface. Fortunately, we find that the near-node in the electric field at the interface
has the effect of greatly suppressing such roughness effects.

15We have also solved the equations with 16 modes and found that the main conclusions are the same
as in the case of two-mode coupling, with merely a more complicated curve shape.
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Fig. 15. Enhanced loss of the TE01 mode at λ = 1.55µm from randomly-varying
ellipticity with rms δ0 = 1%, as a function of the ellipticity correlation length Lc, due
to coupling with the HE21 and EH21 modes. The inset shows the fractional scattered
power in the parasitic HE21/EH21 modes as a function of Lc. If the correlation
length exceeds ∼ 1.6mm, the induced losses become smaller than 0.01 dB/km and
the fractional parasitic power is less than 10−4.

Suppose that we have a scatterer with volume Vs and a ∆ε given by the core/cladding
contrast. Since it is small, we take �E to be roughly constant inside Vs, in which case
the scatterer can be treated by the volume-current method [47] as a radiating dipole
with moment �p = ∆ε �EVs.16 Instead of exactly computing the lost radiation, we make
several order-of-magnitude approximations. First, we assume that all radiated power
is lost, since only negligible fraction should re-radiate into TE01 compared to all the
other modes (∆β and ∆m are irrelevant for a point-like perturbation). Second, since
the core is much larger than the wavelength, we neglect its finite size and consider a
dipole radiating on a planar interface between semi-infinite regions. Third, we neglect
the effect of the omnidirectional mirrors on one side of the dipole; generally, these are
expected to reduce the radiated field, so this is a conservative approximation. Thus, in
the end, we treat Vs as simply a dipole radiating in vacuum, with scattered power [38]:

Ps =
c2
√

µ0
ε0

12π

(ω
c

)4

|�p|2 = ω4

12π

∣∣∣∆ε �EVs

∣∣∣2 , (22)

in dimensionless units (c = µ0 = ε0 = 1) for simplicity.
This is the approximate power radiated by a single scatterer. For multiple scatterers

distributed along the waveguide in an uncorrelated fashion, so that their radiation is
incoherent, one can simply add the power radiated from each one. If the scatterers have
density σs (scatterers per interface area) then the power radiated per length is Ps·2πRσs.
To convert this into a power-attenuation rate α, we divide it by the forward-propagating

16This is an approximation for large ∆ε; the correct moment is generally less—see e.g. the induced
dipole moment of a spherical scatterer in [38].
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Fig. 16. Roughness radiation efficiency ρs, as defined by Eq. (24) for the TE01

mode of the OmniGuide fiber of Fig. 4, based on the | �E|2 at the core/cladding
interface (blue dots) or averaged over a 10nm interval (red circles). Approximate
roughness losses are computed by multiplying ρs with a dimensionful quantity s
that is dependent on the scatterer quantity; e.g. s = 0.03 dB/km for one 10nm
scatterer every 10µm2.

power P = 〈n|B̂|n〉 /4 = 1/4 (c.f. Eq. (42)) in our normalized field units:

α =
Ps · 2πRσs

P
=
(

ω4

12π

∣∣∣∆ε �E
∣∣∣2 · 2πR · 4

)
· σsV

2
s , (23)

where we have separated out the terms that are independent of our assumptions about
the scatterer dimensions. Together, the parenthesized terms have units of 1/length5 in
our units, and we can compute them as a “dimensionless” radiation “efficiency” factor
ρs in our units of 1/a5:

ρs ≡ 2ω4R

3

∣∣∣∆ε �E
∣∣∣2 , (24)

and from that compute α = ρs · s, where s is the dimensionful measure of the scatterer
quantity:

s ≡ σsV
2
s

a5
· 10
ln 10

, (25)

with a 10/ ln 10 factor to convert to dB units (e.g. dB/km). If we take the scatterer
size to be Vs

∼= (10nm)3 and σs
∼= 0.1/µm2, this gives s ∼= 0.03 dB/km for the a of the

OmniGuide fiber. In Fig. 16, we plot ρs vs. λ for our fiber, taking �E as the field at the
interface. The plot indicates a sharp dip towards ρs = 0, due to the point where the node
in the field lies directly on the interface—this feature is unphysical, since it indicates a
breakdown of our assumption of constant �E in the scatterer. For comparison, we also
plot ρs where | �E|2 is averaged over ∆r = 10nm. In either case, we see that ρs < 10−3

over a wide bandwidth, providing a comfortable margin in both the scatterer parameters
Vs and σs as well as our earlier approximations. In general, | �E|2 at the interface goes
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like 1/R4 from Eq. (2), so the uncorrellated roughness losses are expected to scale as
1/R3 (just like the radiation-leakage and absorption losses).

10 Scaling Laws with Index Contrast

Although the computations in this paper assumed an index contrast of 4.6/1.6, the
same qualitative results hold for a wide range of indices as long as the confinement
remains strong. The index contrast manifests itself in the decay rate of the field into the
cladding, which determines the characteristic penetration depth dp, and the analogy
with the metallic waveguide remains valid when dp � R. Below, we derive scaling
relations to predict how the OmniGuide-fiber properties will vary with the cladding
indices (assuming dp � R).
In particular, with each bilayer of cladding, the fields decrease by some attenuation

factor κ(ω, β). For modes nearly on the ω = cβ light line, using “quarter-wave” bilayers
given by Eq. (1), and defining ñ ≡ √

n2 − 1, the mid-gap κ for TE/TM fields is [3, 22]:

κte ∼=
ñlo
ñhi

, (26)

κtm ∼=
n2
loñhi

n2
hiñlo

> κte. (27)

The penetration depth dp of | �E|2 is then proportional to a/(1 − κ2). From Sec. 3, the
TE0� cladding | �E| ∼ dhi/R

2 = fhia/R
2, where fhi ≡ dhi/a = ñlo/(ñlo + ñhi) from

Eq. (1). We can then generalize Eq. (3) to:

fraction of
∫

| �E|2 in cladding for TE0� ∼
f2
hi

(1− κ2
te)

( a

R

)3

. (28)

The scaling of absorption loss is the same, except that from Sec. 6.1 it also proportional
to n, whose average is n̄ ≡ (nhi − nlo)fhi + nlo. Thus,

TE0� cladding absorption ∼
n̄f2
hi

(1− κ2
te)

( a

R

)3

. (29)

One can similarly find the scaling of nonlinearities (whose integrand is n| �E|4):

TE0� cladding nonlinearity
γ

γ0
∼

n̄f4
hi

(1− κ4
te)

( a

R

)5

. (30)

We have verified that these scalings are accurate over a wide range of index contrasts,
and corresponding relations can also be found for the other quantities computed in this
paper.
The number of cladding layers required to achieve a given radiation leakage rate for

TE or TM modes scales inversely with log(1/κte) or log(1/κtm), respectively. So, for
example, if one used indices of 1.459/1.450 (doped silica) [8, 9], ∼ 2000 cladding layers
would be required to achieve the same TE radiation-leakage rates as in Fig. 7.
The bandwidth also varies with index contrast. One is limited by the size of the TM

gap along the light line (due to coupling such as in Sec. 8.1.1), and the fractional size
of the TM gap on ω = cβ for our quarter-wave stack is [22]:

∆ωtm
ω0

=
4
π
sin−1

(
n2
hiñlo − n2

loñhi
n2
hiñlo + n2

loñhi

)
, (31)
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where ω0 is the mid-gap frequency:

ω0 =
ñlo + ñhi
4ñloñhi

· 2πc
a

. (32)

The periodicity a changes with index as well, assuming a fixed vacuum λ. If λ is chosen
to be near ω0, and ν0 ≡ ω0a/(2πc), then a ∼ λν0.

11 Concluding Remarks

We have presented the propagation characteristics of the lowest-loss TE01 mode in an
example OmniGuide fiber with a large core radius R = 30a. Although it is impossible
to consider all possible imperfections in such a fiber, we have studied radiation leakage,
material absorption, nonlinearities, bends, acircularity, and roughness, and have shown
that all of these are within acceptable bounds. Indeed, such properties as material ab-
sorption and roughness are suppressed by four or more orders of magnitude, holding
forth the promise of optical fibers with substantially lower losses and negligible nonlin-
earities compared to conventional silica fibers—even when highly lossy and nonlinear
materials are used for the multilayer cladding. (The same properties open the possibility
of fibers for currently inaccessible wavelengths.) Almost all OmniGuide fiber properties
are dominated by the geometry of the core, and for a wide range of R follow gener-
alized scaling relations that we have derived, as summarized in Table 1. Even though
such a large-core OmniGuide fiber is ostensibly highly multi-mode, the higher losses
of the other modes creates a modal-filtering effect that allows the fiber to operate in a
single-mode fashion as long as the differential losses are greater than the rate of coupling
from imperfections. In this respect, and in many others, such a fiber is analogous to the
hollow metallic waveguides that have been extensively studied in the microwave regime.
In future publications, we will consider many of these issues in greater detail, as well as
other topics such as input/output coupling and dispersion tailoring.
Many of our results were developed from a general perturbation theory, derived from

an abstract eigenproblem formulation, that can be applied to arbitrary waveguiding
systems. This perturbation theory is summarized in the following appendix, whereas the
specific forms of the perturbation operator for particular imperfections were presented
in the preceding sections.

quantity scaling
typical mode separation ∆β 1/R2, or 1/R with EH11

group-velocity dispersion D 1/R2

leakage, absorption, and roughness losses 1/R3

cladding nonlinearity suppression 1/R5

minimum bend radius R0.1% for 0.1% bend losses R2 · · ·R3

ellipticity-δ losses from mode mixing δ2/R

Table 1. Scaling relations with core radius R for TE01 in OmniGuide fibers.

Appendix: Waveguide Perturbation Theory

Having computed the exact eigenmodes of a perfect OmniGuide fiber via the transfer
matrix method, we then considered the problem of various imperfections and perturba-
tions to this idealized situation, such as absorption, nonlinearities, bending, ellipticity,
and so on. In principle, one could compute the exact solutions under these conuiditions,
but since the effects are small, they can be more efficiently estimated via perturbation
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theory. We outline the development of such a perturbation theory in this appendix, and
a later publication will consider the matter in greater detail [48].
Perturbation theory has been developed in many forms for Maxwell’s equations.

Here, we derive it by first expressing Maxwell’s equations in waveguides as a (vecto-
rial) generalized eigenproblem, and then appropriating the perturbation theory from the
standard abstract-algebraic formulation developed for quantum mechanics [49]. Partic-
ular waveguide perturbations are then simply a matter of finding the change in the
eigen-operator induced by the perturbation. This approach to perturbation theory has
the advantage of separating the details of Maxwell’s equations and the particular system
from the generic eigenproblem algebra, but has not been widely used for the full-vector
electromagnetic waveguide problem. Earlier work has preferred other methods, which
in most cases yield equivalent results to our unified approach, but we have also found
some novel generalizations and formulations.
In the following section, we use the Dirac notation of abstract state kets |ψ〉 and

linear operators Â, where the state in this case represents the electromagnetic fields.
The inner product 〈φ|ψ〉 is defined below.
The Maxwell Waveguide Eigenproblem

Here, we derive a general, abstract formulation for the propagation equation of electro-
magnetic states in a waveguide along the ẑ direction. Furthermore, we show that the
modes of the waveguide satisfy a Hermitian generalized eigenproblem in β, which will
then yield orthogonality relations, perturbation theory, and other results. An alternative
eigenproblem in ω is described in [1], and another eigenproblem formulation for use in
plasma physics was presented in [50]
Consider the source-free Maxwell’s equations for fields with a definite-frequency time-

dependence e−iωt. In this case, the �E and �B fields can be cast purely in terms of their
transverse (x̂ and ŷ) components �Et and �Bt [23, 38], since:

Hz =
−ic

ωµ
�∇t × �Et, (33)

Ez =
ic

ωε
�∇t × �Ht (34)

With this substitution, and moving all of the z derivatives to one side in Maxwell’s
equations, the field equations take on the form:

Â |ψ〉 = −i
∂

∂z
B̂ |ψ〉 , (35)

where we define Â, B̂, and |ψ〉 below. Eq. (35) plays the role of Schrödinger’s equation
from quantum mechanics, with z taking the place of time. |ψ〉 is (abstractly) the elec-
tromagnetic field pattern as a function of z, and (concretely), in this case, is represented
by the 4-component column vector:

|ψ〉 ≡
(

�Et(z)
�Ht(z)

)
, (36)

where we define the inner product of two states |ψ〉 and |ψ′〉 by:

〈ψ ψ′〉 ≡
∫

�E∗
t · �E′

t + �H∗
t · �H ′

t, (37)
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and the integral is over the waveguide cross-section at a given z. Â and B̂ are the
Hermitian operators (under this inner product):

Â ≡
(

ωε/c− c
ω
�∇t × 1

µ
�∇t× 0

0 ωµ/c− c
ω
�∇t × 1

ε
�∇t×

)
, (38)

B̂ ≡
(

0 −ẑ×
ẑ× 0

)
=


1

−1
−1

1

 = B̂−1. (39)

Note that Â is positive-definite (for ω > 0), but B̂ is not; more on this below. Also,
Â is Hermitian if ε is purely real—in physical systems, ε has a small imaginary part
corresponding to material absorption, but we add this feature a posteriori in Sec. 6.1
via perturbation theory.
To start with, we consider the ideal case where the waveguide is uniform along z,

in which case the Bloch-Floquet theorem [51] implies that the states of the system can
be chosen with a z-dependence of the form eiβz for some wavenumber β. These are the
eigenmodes of the waveguide, i.e. the “normal modes” [23]:

ei(βz−ωt) |ψ〉 . (40)

Substituted into Eq. (35), they satisfy the Hermitian generalized eigenproblem:

Â |ψ〉 = βB̂ |ψ〉 . (41)

These states must satisfy the usual properties of Hermitian eigenproblems, albeit some-
what modified from quantum mechanics by the presence of a non-positive-definite B̂:

• The eigenvalues β are real as long as 〈ψ|B̂|ψ〉 �= 0. (Because B̂ is not positive-
definite, this is not always true, leading to evanescent modes with complex or
imaginary β.)

• Orthogonality: for two eigenstates |ψ〉 and |ψ′〉 with eigenvalues β and β′ such
that β∗ �= β′, 〈ψ|B̂|ψ′〉 = 0.

• The eigenstates generally form a complete basis for the system.

• For localized modes (e.g. guided modes of a waveguide), the eigenvalues are a
discrete sequence βn with eigenstates |n〉.

The orthonormality relation, expressed explicitly in terms of the transverse fields, be-
comes: 〈

ψ B̂ ψ′
〉
= ẑ ·

∫
�E∗

t × �H ′
t + �E′

t × �H∗
t , (42)

which is proportional to the forward-propagating power for 〈ψ|B̂|ψ〉. The fact that eigen-
modes are orthogonal under this metric has previously been derived from the Lorentz
reciprocity theorem for electromagnetism [23], whereas here it follows automatically
from the general properties of Hermitian eigenproblems.
In this paper, we focus primarily on the propagating (real β), guided (discrete β)

modes of the waveguide. We normalize them so that 〈n|B̂|n〉 = 1. When one expands a
field in the eigenstates, in principle the continuum and evanescent modes are required
as well, but we shall show that in the cases of interest here, only a few guided modes
are needed for acceptable accuracy.
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Perturbation Theory

Given a Hermitian eigenproblem, we can now directly employ the perturbation-theory
formulations derived for quantum mechanics [49] in order to find the effects of a small
perturbation ∆Â. Such perturbation theory takes on two equivalent forms: z-independent
and z-dependent. The former expresses the new eigenstates and eigenvalues as a power-
series expansion in ∆Â. The latter expands a propagating state |ψ〉 in the basis of
the unperturbed states |n〉, with z-varying expansion coefficients. Such a z-dependent
expansion is often called “coupled-mode theory” in electromagnetism [23,45].
The main results from the z-independent theory that we will employ here are that

the first- and second-order corrections to an eigenvalue βn are given by:

∆β(1)
n =

〈
n ∆Â n

〉
, (43)

∆β(2)
n =

∑
n′ �=n

∣∣∣〈n′ ∆Â n
〉∣∣∣2

∆βnn′
, (44)

where ∆βnn′ ≡ βn − βn′ . Because of the smallness of the perturbations we consider,
we generally only use the second-order correction if the first-order correction is zero by
some symmetry. A minor modification must be made in the case of degenerate (equal-β)
modes, such as ±m pairs in cylindrical fibers; in this case, the degeneracy is typically
broken by ∆Â, and the first-order splitting is given by diagonalizing the ∆Â operator
in the basis of the degenerate modes.
In z-dependent perturbation theory, a state |ψ〉 in the perturbed waveguide is ex-

panded in the unperturbed eigenstates |n〉 with coefficients cn(z), satisfying:

dcn

dz
= iβncn + i

∑
n′

〈
n ∆Â n′

〉
cn′ . (45)

These equations are exact if all modes are included in the expansion. In the most
common case, one starts with only one mode cn(0) = 1 and wishes to find the lost
power |cn′(z)|2 in “parasitic” (scattered) modes |n′〉 after some distance z. Eq. (45) can
be approximately solved in that case to lowest-order for a uniform perturbation ∆Â,
yielding:

|cn′(z)|2
|cn(0)|2

∼=
4
∣∣∣〈n′ ∆Â n

〉∣∣∣2
∆β2

n′n
sin2 (∆βn′nz/2) . (46)

Thus, the lost power oscillates rather than growing steadily—this is due to destructive
interference in the scattering, as long as ∆β �= 0. This fortunate interference is stymied,
however, if the modes are lossy or if ∆Â contains some non-uniform disorder, a fact
that we considered with Eq. (16) and in Sec. 8.3.
For perturbations that vary smoothly in z, one can alternatively expand in the

instantaneous eigenstates |n(z)〉 and βn(z) of Â(z), in which case the coefficients obey:

dcn

dz
= iβncn −

∑
n′ �=n

〈
n dÂ

dz n′
〉

∆βn′n
cn′ . (47)

One can see, qualitatively, that changes slow compared to the lengthscale of 1/∆β
should cause small scattering and induce adiabatic evolution of the modes; this is proved
rigorously in [52].17

17This adiabaticity was also considered in [53], where it was erroneously claimed that an analogue of
Eq. (41) could be expressed as an ordinary (non-generalized) Hermitian eigenproblem with the same
field-state representation (leading to an incorrect orthogonality relation).
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Although both Eq. (44) and Eq. (46) in principle require an infinity of modes to be
included, the ∆β in the denominators implies that one usually need only consider a few
modes with nearby β. This is especially true in the case of large-core OmniGuide fibers,
in which the close β spacing of the guided modes causes a few couplings to dominate,
whereas the cladding (Bragg mirror) modes are at distant β. As a rule of thumb, if a
perturbation has a characteristic lengthscale L (e.g. the bend radius Rb), only modes
with ∆β � 1/L contribute significantly.

Weak Dielectric Perturbations

One of the most general and important forms of waveguide pertubation is when the
dielectric function ε is changed by a small ∆ε. In this case, we simply compute ∆Â
by substituting ε+∆ε into Eq. (38) and subtracting the unperturbed Â. The resulting
expression is inconvenient to evaluate directly because it contains derivatives. Since
perturbation theory only employs ∆Â inside inner products 〈n′|∆Â|n〉, however, we
derive a simpler formulation by integrating by parts and then returning to the six-
component field-representation via Eqs. (33–34). This yields:

〈
n′ ∆Â n

〉
=

〈 E′
x

E′
y

E′
z

ω

c

 ∆ε
∆ε

∆ε

 Ex

Ey

Ez

〉
+O(∆ε2). (48)

Here, we have intentionally dropped terms of O(∆ε2) or less, even though our general
approach ostensibly lacks that limitation (perturbation theory should remain valid as
long as ∆ε yields a small integral 〈n′|∆Â|n〉). The reason for this, as we discussed in
Sec. 8.2, is that for large ∆ε the changing boundary conditions on the fields cause the
näıve ∆Â to be incorrect. This small-∆ε formula is sufficient to compute absorption
losses and nonlinearities, but not for ellipticity or other moving-boundary problems in
systems with large index contrasts.
Eq. (48), in conjunction with the first-order shift ∆β

(1)
n = 〈n|∆Â|n〉 / 〈n|B̂|n〉 , has

been derived elsewhere by various methods [23, 35, 45]. However, with the exception
of [39], it has not been recognized that this expression needs to be corrected for large
∆ε; we further investigate this limitation in [44].
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