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Efficient antiguiding of TE and TM polarizations in
low-index core waveguides without the need

for an omnidirectional reflector
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While an omnidirectional bandgap is necessary to reflect arbitrary polarized light with a planar periodic
reflector at any angle of radiation incidence, we demonstrate that omnidirectionality is not at all necessary
for efficient antiguiding of modes of any polarization in low-index core photonic bandgap (PBG) fibers and
waveguides. For a given radiation decay rate into the reflector and multilayer bandgap size we characterize
the phase space of fiber materials leading to the same effective guiding conditions. We demonstrate that low-
and high-index-contrast PBG waveguides can antiguide problematic TM-like modes equally effectively. Fi-
nally, the possibility of TE-like guidance of a TM-polarized mode is described. © 2005 Optical Society of
America
OCIS codes: 060.2400, 130.2790.
Antiguiding fibers and waveguides promise impor-
tant advantages over standard total-internal-
reflection fibers in various applications. Particularly,
hollow photonic bandgap (PBG) fibers such as Bragg
fibers,1,2 microstructured fibers,3,4 and multilayer
planar waveguides,5–7 are able to guide light through
hollow (gaseous) cores, promising low material loss
and nonlinearity and achieving radiation confine-
ment via reflection from a surrounding dielectric
multilayer mirror. Examples of potential applications
of hollow PBG fibers are high-power guiding at a des-
ignable wavelength, ultralow nonlinearity fibers for
telecommunications, and compact sensors for which
functional materials could be integrated directly into
the hollow fiber core. Antiguiding waveguides can
also prove to be important in guiding through low-
refractive-index liquids such as water, which is im-
portant in biological sensing and chemical character-
ization applications,8 opening the prospect of
building liquid-core waveguides on a chip. Until re-
cently Teflon AF was the only solid material available
as a lower-index cladding for a water core, thus mak-
ing a total-internal-reflection, liquid-core waveguide
possible.

In Ref. 9 the principle of omnidirectional (OD) re-
flectivity was described, stating that a planar
multilayer made of a periodic sequence of bilayers of
two different dielectrics can be designed to com-
pletely reflect incoming light in a certain frequency
range for any angle of incidence and any state of po-
larization. The recipe was a choice of high enough in-
dex contrast between bilayer dielectrics, as well as
high enough difference between reflector refractive
indices and a core index. It is frequently suggested
that to build an efficient antiresonant waveguide ef-
fective for both TE- and TM-polarized modes (TM be-
ing most problematic) one needs an OD reflector as a
part of the design. Although this statement is easy to
rebuff with the counterexample of hollow silica-based
microstructured fibers4 that guide with non-OD re-
flectors, the question of antiresonant waveguide
guiding efficiency as a function of core and reflector

indices is an interesting one. Particularly, in large-
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core two-dimensional waveguides and Bragg fibers
the ray picture of guiding is applicable when a well-
defined angle of incidence onto a reflector can be as-
signed to a core mode, thus envisioning its propaga-
tion by consecutive reflections from a PBG mirror. In
this regime, to guarantee low-loss guiding it is neces-
sary to design an efficient reflector for all polariza-
tions but only a narrow range of incidence angles
around an effective incidence angle of a core mode.
This design condition is considerably less restrictive
that that of OD reflection. The efficiency of a reflector
operating inside a bandgap can be characterized by
the radiation decay rate per bilayer, which also de-
fines waveguide absorption and radiation losses as
well as the size of the reflector bandgap. The reflector
bandgap defines waveguide spectral properties as
well as resistance to perturbations.

In this Letter we consider the performance of re-
flectors made of a periodic sequence of dielectric lay-
ers, as encountered in Bragg fibers and planar
waveguides. We first present design considerations
for an optimal two-material periodic reflector operat-
ing at a fixed angle of incidence. Then we character-
ize reflector performance in terms of a field decay
rate and a bandgap size for both TE and TM polar-
izations. We then consider low-refractive-index core
planar waveguides and Bragg fibers and demonstrate
that two distinct guiding regimes exist for a problem-
atic TM polarization, one of them being TE like. In
Fig. 1(a) a schematic is presented of a semi-infinite
reflector made of a periodic sequence of high- �nh� and
low- �nl� refractive-index bilayers with corresponding
layer thicknesses dh and dl. The angle of radiation in-
cidence is fixed and equal to �. The refractive index of
the material above the reflector (the core material) is
nc. The wave-vector component along the z direction
kz=�nc sin��� is conserved throughout the reflector,
while its x component in a layer of refractive index n
is kx

n=��n2−nc
2 sin2���. In each layer, y field compo-

nents can be represented in the form of two counter-
propagating waves �Aj

1 exp�−ikx
nx�+Aj

2 exp�ikx
nx��
�exp�ikzz− i�t�, where j is a layer index, with j=0
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corresponding to the core material. Standard trans-
fer matrix theory10 can be used to relate expansion
coefficients in layers j and 0. Thus, defining the core
high-index layer transfer matrix as Mch and the bi-
layer transfer matrix as Mhlh, we can, for example,
write the field coefficients in the high-index layer
j+1 as Āj= �Mhlh�j/2MchĀ0. Assuming an infinite num-
ber of layers in the reflector and requiring expansion
coefficients Āj to tend to zero as j→�, we arrive at
the conclusion that MchĀ0 has to be proportional to
an eigenvector of matrix Mhlh with a corresponding
eigenvalue ��1 of a magnitude smaller than 1. The ei-
genvalue itself will determine the field decay rate
into the reflector per bilayer as Āj���1

j/2 Ā0; thus, the
smaller the eigenvalue, the smaller will be the field
penetration into the multilayer. From an analytical
expression for ��1, it follows that, for a fixed angle, to
minimize the value of ��1 at a center wavelength �c,
the optical thicknesses of individual layers at such a
wavelength will have to satisfy the quarter-wave con-
dition dhkx

nh=dlkx
nl=� /2��2n+1�, where n is an inte-

ger.
For such an optimal reflector the field decay rate

can be found analytically, and for TE polarization
(where the electric field is parallel to the reflector
plane) it is ��TE�=kx

nl /kx
nh. In Fig. 2(a) a schematic of a

Fig. 1. Schematics of (a) a planar PBG reflector, (b) a pla-
nar hollow PBG waveguide and a fundamental TE mode.

Fig. 2. Schematics of TE and TM radiation decay rates
into the quarter-wave stack reflector optimized for an inci-
dence angle � when (a) 	c�	crit, (b) 	c�	crit.
TE field decay rate is presented, featuring monotoni-
cally increasing reflector efficiency for oblique angles
of incidence. Reflection of TM polarization (where the
magnetic field is parallel to the reflector plane) is
more challenging, and, depending upon the value of
the core index, two cases are possible. If 	c�	crit (TM
regime), where 	crit=	h	l / �	h+	l�, one finds that ��TM�
= �	lkx

nh� / �	hkx
nl�, which is presented in Fig. 2(a). While

reflection of TM polarization is worse than reflection
of TE polarization for any angle of incidence, one can
still design a reflector that reflects both polarizations
as ��TM,TE��1 for any design angle �. If 	crit�	c�	l

(TM̃ regime), then ��TM�= �	hkx
nl� / �	lkx

nh�, which is plot-
ted in Fig. 2(b). As before, reflection of TM polariza-
tion is worse than reflection of TE polarization; more-
over, there exists an incidence angle �crit
=sin−1�	crit /	c� for which it is impossible to design an
efficient reflector, as ��TM��crit��=1.

We now consider the performance of reflectors for
oblique incidence angles ��90°, kz��nc, which is
relevant for modal propagation in planar waveguides
with large enough cores [Fig. 1(b)] and for Bragg
fibers.11 We find that for a wavelength � this condi-
tion is typically satisfied when dc
10�. To character-
ize the antiguiding efficiency of a large-core wave-
guide, in Fig. 3(a) we present universal contour plots
of the radiation decay rates into the reflector for TE
and TM polarizations as functions of the relative
multilayer indices (with respect to nc) at ��90°. Note
that for TM polarization there are two distinct re-
gions of phase space, in Fig. 3(a) denoted as TM when
	c�	crit and TM̃ when 	crit�	c�	l. In each of the re-
gions we present contour lines of material param-
eters corresponding to the same field decay rate. For
example, a polymer-based low-index-contrast reflec-
tor with nl=1.414 and nh=1.6, antiguiding (in the
TM̃ regime), in a liquid-core �nc=1.32� will have the
same TM field decay rate of �0.72 per bilayer as a

Fig. 3. TE, TM polarizations, ��90°. Circles, examples of
high and low index contrast. (a) Field decay rates into the

reflector. (b) Relative bandgap sizes.
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high-index-contrast OD reflector with indexes nl
=1.414 and nh=2.5, guiding (in the TM regime) in air
�nc=1� or in liquid �nc=1.32�.

Another important reflector characteristic is a
bandgap size. We consider �kz ,�� to be on the edge of
a bandgap if the corresponding eigenvalue of a bi-
layer transfer matrix ��1=1, thus rendering the re-
flector ineffective. For an optimal quarter-wave stack
designed for a particular angle of radiation incidence
� and a center wavelength �c, the size of the funda-
mental bandgap along the line kz=�nc sin��� (the dis-
tance along this line between the two bandgap edges)
can be found analytically and is given by �� /�c
=4/� sin−1���
−1� / �
+1��, where 
= ���1+��1

−1 � /2.
��1 is evaluated at �c and � and is given by the ex-
pressions in the previous paragraphs. In large-core
waveguides ��90°, and kz=�nc defines an approxi-
mate dispersion relation of the low-loss core modes.
Thus, the bandgap size given by the above expression
at ��90° will be the one along the dispersion curve of
a mode. In Fig. 3(b) we present universal contour
plots of the reflector bandgaps for TE and TM polar-
izations at �=90° as functions of the relative
multilayer indices. From the figure one can see that
low-index-contrast non-OD and high-index-contrast
OD reflectors discussed above exhibit similar TM
bandgaps of �20%.

Finally, we investigate the field distribution of TE-
and TM-polarized fundamental modes in a low-index-
core planar waveguide for which dckx

nc=�. In Fig. 1(b)
the field distribution of a TE-polarized mode is
shown, where rc�� / �2dc

�	h−	l�, when dc��. Be-
cause of the rc

2 prefactor, the outgoing flux in the re-
flector (which defines the radiation leakage through a
finite size reflector), as well as the amount of field en-
ergy in the reflectors (which defines waveguide loss
due to the material absorption) decreases with core
size as dc

−3 when normalized by the total energy in
the mode. Such scaling of material absorption and ra-
diation losses is also observed in TE0n modes of hol-
low Bragg fibers.11 On the other hand, for TM-
polarized modes two field distributions are possible,
depending on whether operation is in the TM or TM̃
regimes. In Fig. 4(c) distributions of magnetic (solid
curves) and electric (dotted curves in the core)
fields are presented, where �Ez

core�x��� �Ex
core�x��

��Hy
core�x�� /nc. In the TM regime, field content in the

core is considerably different from that in the TE
case, leading to dc

−1 scaling of radiation and absorp-
tion losses with the core size, which is similar to the
scaling of HE, EH modal losses in hollow Bragg
fibers.11 On the other hand, in the TM̃ regime field
distribution in the core becomes similar to that of a
TE case, thus leading again to a dc

−3 dependence of
radiation and absorption losses even for a TM polar-
ized mode! This analytical result for planar reflectors
also holds for antiguiding Bragg fibers. In Fig. 4(a)
we present TM radiation loss of a 31-layer Bragg fi-
ber designed for �c=1 �m with nh=2.5, nl=nclad
=1.414 as a function of a core radius. This high-
index-contrast fiber exhibits OD reflectivity when nc
=1. In the TM regime with nc�1.23 one can observe
variable radiation loss scaling with core size
�R−2–R−3, while in the TM̃ regime with nc�1.23
this scaling becomes R−3. In Fig. 4(b) TM radiation
loss in low-index-contrast fiber operated in the TM̃
regime is presented. The same number of layers is
assumed, with nh=1.6, nl=nclad=1.414. Note the R−3

scaling of radiation losses. As established earlier, a
high-index contrast reflector operating with nc
=1, 1.32 has field decay factor and bandgap size very
similar to a low-index contrast reflector operating
with nc=1.32, thus leading to the comparable TM ra-
diation losses for both of these Bragg fiber designs.
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Fig. 4. TM and TM̃ regimes. (a) High index contrast. (b)
Low index contrast, Bragg fibers. (c) Field distributions in
antiguiding planar waveguides.


