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Abstract: A boundary integral method for calculating leaky and guided modes of microstruc-
tured optical fibers is presented. The method is rapidly converging and can handle a large
number of inclusions with arbitrary geometries.
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1 Introduction

Microstructured optical fibers (MOFs) have recently attracted much interest because of their unique optical
properties [1]. Although significant progress has been made in the modelling of MOFs, rigorous modal
analysis remains challenging, especially in the case of large number of holes or non-cylindrical hole shapes.
A number of modelling techniques has been developed for finding the modes of MOFs - the plane wave
expansion method [2], the localized function method [3] (in a scalar approximation), finite element method
[4], boundary element methods [5, 6] and the multipole expansion method [7]. The finite element method
requires volume discretization which demands considerable memory resources to achieve high accuracy. It is
however well suited to treat complex shapes. The multipole method experiences convergence and accuracy
problems when the holes are non circular and too closely spaced from one another. Here, we develop an
accurate and efficient boundary integral method for the modal analysis of MOFs. We extend the boundary
integral method developed for the modal analysis of conventional waveguides [8]. The key advantages of the
proposed method are the following: For circular inclusions much of the calculations are done analytically
resulting in a highly accurate and rapidly convergent implementation. The method can treat inclusions of
arbitrary shapes defined by a parametrical curve. The method is able to treat accurately systems that contain
a large numbers of inclusions even if they are very closely spaced.

2 Description of the method

The schematic of a MOF geometry is shown in Fig. 1(a). The fiber cross-section is located in the xy plane. A
finite number Nc of homogeneous inclusions of refractive index nc are embedded into a background material
of refractive index ng. The field components are taken to have an exp i(βz − ωt) dependence. Here β is the
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Fig. 1. a) Schematic of a MOF cross section. b) Arbitrary shaped inclusion and the regularization circle.

propagation constant of the mode and ω is the angular frequency, which is related to the free-space wave
number by ω = ck0. The effective index is defined as ne = β/k0. Given the longitudinal components Ez and
Hz, all the other field components can be deduced from Maxwells equations. In each of the homogeneous
regions, the longitudinal components satisfy the Helmholtz equation: ∇2E
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2 and similarly forHz. The longitudinal and tangential components of the fields are continuous:
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where ∂
∂τ is the tangential derivative to the boundary contour L, ∂

∂n is the outer normal derivative, and
ε(c,g) is the dielectric constant of either the inclusion or the cladding. Since Ez and Hz satisfy the Helmholtz
equation, they can be represented by the following contour integrals [8]:

Ez(�r) =
∫
L

e(�rs)G(�r, �rs)dls Hz(�r) =
∫
L

h(�rs)G(�r, �rs)dls (2)

Evaluating the contour functions e(�rs) and h(�rs) is sufficient to obtain the electromagnetic fields. The function
G(�r, �rs) is the Green’s function of the Helmholtz equation: G(�r, �rs) = i

4H
(1)
0 (k0γ|�r−�rs|) where H(1)

0 () is the
zeroth-order Hankel function of the first kind. If �r is located inside of an inclusion the integration is taken
along the inclusion’s boundary while if it is located in the fiber cladding the integration is taken along all
the inclusions boundaries. Inserting the contour integrals (2) into the continuity conditions (1), a system of
four coupled linear integral equations for the contour functions e(k)

c , e(k)
g , h(k)

c , h(k)
g , k = 1 . . . Nc, is obtained.

The value of ne, for which a nontrivial solution exists, defines the effective refractive index of the fiber mode.

Consider first the circular inclusions. Let ψ(k)(s′) represent any of the contour functions e(k)
c , e(k)
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c , or
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g and let st = t 2π

2n(k) , t = 0, . . . , 2n(k)−1, be an equidistant grid. For the discretization of the integral equa-

tions, we use the trigonometric interpolation: ψ(k)(s′) ≈
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where a stands for the inclusion radius and Φ(s, s′) stands for G(s, s′),
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. The fourier

transforms of Φ(s, s′) in the case of a contour containing the singular point �rs′ = �rs, which seems to be the

most problematic, can be evaluated analytically according to the following formulas [9]:
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kind Hankel functions, while a prime denotes the derivative with respect to the argument. For the integrals
along the other contours which have no singularities a FFT is performed. If the distance between the source
point �rs and a contour which does not contain this point is relatively large (in the case of a large number
of inclusions, this becomes the most common situation) a simple trapezoidal rule is applied instead of the
trigonometric interpolation, resulting in a very efficient method. For the arbitrary shaped inclusions, the
discretization procedure is similar to the one used for the circular inclusions except for the evaluation of the
fourier transform of Φ(s, s′) along a contour containing the singular point where a regularization procedure
is performed. At the arbitrary inclusion, a circle with a comparable diameter as shown schematically in
Fig. 1(b) is constructed. To the integrals along the arbitrary inclusion the corresponding integrals along the
regularizing circle are substracted and added. The substraction makes these integrals nonsingular while the
added part is evaluated analytically according to the previous formulas.

When the discrete integrals are substituted into integral equations, a matrix equation is obtained: A(ne) ·
X = 0. The vector of unknownsX has 4Nc

∑
2n(k) elements which are the values of e(k)

c (st), e
(k)
g (st), h

(k)
c (st),

h
(k)
g (st), k = 1, . . . , Nc. The effective index is obtained by the values of ne for which the determinant of A(ne)

is zero. We perform a search for the minima of the determinant along a single line in the complex plane
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and then use these local minima as initial values for a further root refinement with the Newton method.
An important part of the method is the inclusion of the symmetries. Considerable reduction of the overall
computational cost is achieved as only a small part of a structure has to be used in a simulation.

The method was first tested on several simple problems, and it shows excellent agreement with simulations
performed by the multipole method. As a first example we consider finding the fundamental core guided
mode of a hollow-core MOF presented in Fig. 2(a). It consists of five rings of circular holes arranged on a
hexagonal lattice and surrounding a hollow core formed by the two missing rings in the fiber center. The
hole to hole pitch is Λ = 2.74μm, the hole diameter is d = 0.95Λ, and the core diameter is dc = 2.5d. The
glass cladding has a refractive index of ng = 1.45, while for the air holes nc = 1. Dispersion curves for the
fundamental core guided mode of this fiber are shown in Fig. 2(a). Next, the structure presented in Fig. 2(b)
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Fig. 2. (a) Dispersion curve of the fundamental mode of a hollow core MOF with 5 rings of holes. (b)
Birefringence of the fundamental mode of a MOF with a elliptic hollow core.

is considered. It consists of three layers of circular holes and a central elliptic core. The hole pitch is Λ = 2μm,
the hole diameter is d = 0.9Λ, and the elliptical core has axis a = 2.3μm and b = 4.6μm. The glass cladding
is assumed to have refractive index of ng = 1.45, while refractive index of the air holes is nc = 1. In Fig. 2(b)
the birefringence of the fundamental mode of this fiber is presented. Interestingly, the birefringence changes
its sign around λ = 1.41μm.

3 Conclusion

A high performance boundary integral method for the modal analysis of MOFs is presented. The method
can treat a large number of arbitrary shaped inclusions. When spacing between inclusions decreases no
convergence problems arise; only the computational cost of some of the matrix elements (the order of FFT)
increases. For circular inclusions, in particular, the majority of the calculations are done analytically, ensuring
high accuracy and rapid convergence.
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