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Group-velocity dispersion and deterministic PMD 
of modes in a hollow omnidirectional Bragg fiber. 
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Fig. 1. (a) Schematic of omnidirectional photonic Bragg fiber. Hol- 
low core of radius R,, mirror region of N bilayers of thickness d,  
surrounded by an over-cladding extending to  R,. (b) Typical band 
structure of an OPBF. The diagonal dashed line is the air light line. 
To the left of the light line are guided modes of the core, while t o  the 
right are surface states of the mirror. The thick curve corresponds 
to  the HE11 mode, exhibiting regions of large negative dispersion 
(LND), zero dispersion (ZD), and large positive dispersion (LPD). 
Thin lines are other nearby modes. 

Omnidirectional photonic bandgap fiber (OPBF) is a 
new class of Bragg fiber based on omnidirectional reflectiv- 
ity [l]. The large hollow core of these fibers and the large 
index contrast in the surrounding omnidirectional mirror 
make the fiber support a number of low-loss core-guided 
modes. Through deliberate fiber design one can tailor the 
fiber modes to exchange properties with other fiber modes 
over narrow frequency ranges (avoiding crossing), which 
gives the fibers rich, controllable dispersion properties. The 
dispersion properties of the OPBF fiber can be tailored 
very accurately, because of the large number of degrees of 
freedom the fiber geometry possesses. This makes OPBF 
fibers good candidates for long-haul transmission, disper- 
sion compensation, zero-dispersion transmission, or other 
applications that require accurate dispersion control. In- 
timately connected to the mode dispersion properties is 
the detrimental effects of Polarization Mode Dispersion 
(PXID). When dealing with potential applications like long- 
haul transmission or dispersion compensation, one must 
ensure that the PMD of a fiber is acceptably small. The 
aim of this work is to demonstrate dispersion and PMD 
properties of t,he modes of OPBFs. 

OPBF consists of a hollow core, a series of bilayers of 
contrasting refractive-index glasses, and an over-cladding. 
Figure l a  illustrates the cross section of an OPBF. Modal 
electromagnetic fields decay exponentially in the mirror. 
Thus, field penetration into the mirror is largely limited to 
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the first few bilayers. Moreover, the modal dispersion re- 
lation is very sensitive to the first several mirror layers. In 
fact, this sensitivity allows group-velocity dispersion con- 
trol by design of such layers. 

For a particular realization of OPBF, the band structure 
of a doubly degenerate HEll mode is shown in Figure lb. 
Data is presented in dimensionless units where a sets the 
length scale, w is frequency, and p is propagation constant. 
Because of the avoided crossing with other guided modes, 
the NEll  dispersion curve exhibits regions of large negative 
dispersion, zero dispersion, and large positive dispersion. 

Quantitative analysis of a mode’s dispersion properties 
involves calculating a modal dispersion relation U ( @ .  For 
cylindrically symmetric dielectric fiber profiles, this can be 
accomplished by a well established transfer matrix tech- 
nique [l]. Evaluation of the deterministic PMD (arising 
from uniform along the direction of propagation perturba- 
tions) is a much harder problem as it involves the change 
in the dispersion relation of an originally doubly degen- 
erate mode when the waveguide geometry is perturbed 
away from cylindrical symmetry. In the case of low index- 
contrast waveguides, the problem of deterministic PMD 
evaluation was successfully solved in the context of coupled- 
mode theory in [2]. However, this formulation was found 
to fail in the case of high index-contrast. Perturbation 
and coupled-mode theory formulations for evaluation of 
deterministic PMD for a generic class of geometric pertur- 
bations of high index-contrast dielectric waveguide profile 
have been developed by the authors in [3-51 

In the following, we apply this formulation to character- 
izing PhlD of a doubly degenerate mode of an OBPF for a 
common elliptical perturbation of a fiber profile. We estab- 
lish that, if in some range of frequencies a doubly degener- 
ate mode of angular index m = 1 behaves like a mode of 
pure polarization T E  or TIM (where polarization is judged 
by the relative amounts of the electric and magnetic lon- 
gitudinal energies in a modal crossection), its inter-mode 
dispersion parameter (which defines a deterministic PMD) 
T = is strongly correlated to the groupvelocity dis- 
persion D by r = -MD, where 6 is a measure of the 
fiber ellipticity and AB, is a split in the propagation con- 
stant of a linearly polarized doubly degenerate mode due 
to an elliptical perturbation. This indicates that regions 
of high dispersion will, generally, correlate with regions of 
high PMD. Thus, fiber design needs to be optimized to 
reduce PMD value when high groupvelocity dispersion is 
desired. 

We calculate the PMD of elliptically distorted OBPFs 
by using a Hamiltonian formulation of Maxwell’s equa- 
tions in terms of transverse components of electromagnetic 
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fields [l,3,4]. In the case of a uniform circularly symmet- 
ric waveguide profile, modes (field solutions of Maxwell’s 
equations) will satisfy a generalized Hermitian eigenvalue 
problem 

with the following orthogonality relation between the 
modes 
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When a uniform perturbation of a wa1;eguide profile is 
troduced into a system, the operator A0 will be lnodifi 
We denote the correction to an original operator A0 as 
Then, eigenproblem (1) is modified, becoming 

We consider a general scaling perturbation that is uni- 
form along i axis, where the discontinuous dielectric in- 
terfaces of unperturbed radii pi are described, when per- 
turbed, by a new set of curves zScaled = pzCos(B)(l + 
6x)jYscaled = p,Sin(e)(l + d,), where 0 E ( o , ~ T ) ,  i E 
(1, Number of interfaces). The case of 6, = 6, = 6 corre- 
sponds to a uniform scaling, while the case of 6, = -6, = 6 
corresponds to a uniform ellipticity of a waveguide profile. 
New eigen values p* of the split doubly degenerate eigen 
mode are found by solving standard secular equations 

pf = p + < $)P,ml A &b,m > * < $p,ml AI$A-m > 
< d2?,mlBl%b.m > < dJP,ml&h,m > . 

(4) 
PMD is defined to be proportional to the inter-mode dis- 
persion parameter, which in terms of the group velocities 
mismatch is T = 2 - This can also be expressed as 
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In [4] we derive the following expressions for AA. The 

case of a uniform scaling perturbation 6, = 6, = 6 gives 

ADS =< $ J p , m  n Al$fp,m >= 2bwJsdS(EIEzl2 + l H Z l 2 )  , 
(5) 

where integration is performed over the fiber cross section. 
Moreover, as shown in [4], Ap, defines group-velocity dis- 
persion through the following equalities AD, = S(w%-p), 
a = &,J% = -X6D. 

Next, consider the case of a uniform-ellipticity pertur- 
bation 6, = -6, = 6. The first-order correction to the 
split in the values of propagation constants of the modes 
(P,m = 1) and (P,m = -1) due to the uniform re-scaling 
(4) is 
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Fig. 2. HE11 groupvelocity dispersion D and PMD parameter for 
a uniform ellipticity perturbation. PMD tends t o  positively correlate 
with dispersion, especially in the high dispersion regions. However, 
low value of PMD, and considerable value of groupvelocity dispersion 
can be simultaneously achieved by fiber design. At  X = 1 . 5 1 ~ ~ 1 ,  for 
example, PMD is zero while D = - 2 O O O A .  

An important conclusion about PkID of a fiber can be 
drawn when electric or magnetic longitudinal energy dom- 
inates substantially over the other [4]. In the case of pure- 
like T E  (s dselEZl2 << & dslHZl2) or T M  (s, dslHZI2 << 

( 5 )  becomes almost identical to the split in the degener- 
acy of t,he modes due to the uniform ellipticity perturba- 
tion ( 6 ) .  Thus AD, = AD,. As PAID is proportional to 
T = %, and taking into account expressions for the fre- 
quency derivatives of AD, we arrive at the conclusion that 
for such modes PAID is proportional to the groupvelocity 
dispersion of a mode 

Jsds~IE,I 2 ), the mode split due to the uniform scaling 

(7) r=-=-- a A  De a A  8, - -x6D. aw aw 
In Figure 2, we present the HE11 groupvelocity dispersion 
D and a PAdD parameter defined as -L for a uniform ellip 
ticity perturbation and a particular design of an OBPF. As 
predicted by (7), the PAID of the mode follows the group- 
velocity dispersion closely, especially in the high-dispersion 
regions around 1.4pm, 1.45pm, 1.6pm and 1.7pm. In the 
moderate-dispersion region around 1.51pm, PAID and dis- 
persion can be decoupled so that a low value of PbID and 
a still considerable value of the modal geometric dispersion 
-2000* are achieved. 
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w e  = 2 < $p,1 I A Al$p,-1 >= REFERENCES 
~ ~ W J ~ ~ S [ ( - C I E . ~ ~  + lH2I2) + 2Im(eE,*E,9 - H,*H,3)], 

where E’s and H’s are the electromagnetic fields of the 
(p, m = 1) mode. In general, we find that for high index- 
contrast waveguides ape is dominated by the diagonal 
term - j ,  ds[(-€I& I 2 + 1 f f z  1 2 ) ,  while for low index Contrast 
waveguides the cross terms of (6) become equally impor- 
tant. 
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