Novel Photonic Crystal Fiber Sensors Using Splitting of a Degenerate Plasmonic Doublet

Alireza Hassani, Bertrand Gauvreau, Maksim Skorobogatiy
Engineering Physics Department, École Polytechnique de Montréal, C.P. 6079, succursale Centre-Ville Montreal, Québec H3C3A7, Canada
alireza.hassani@polymtl.ca, maksim.skorobogatiy@polymtl.ca

Abstract: The concept of honeycomb photonic crystal fiber-based plasmonic sensor, having a sensing mechanism based on the detection of breaking of an degeneracy between the two near-IR plasmonic excitations with the resolution of $7.2 \cdot 10^{-6}$ RIU, is developed.

© 2007 Optical Society of America

OCIS codes: (060.5295) Photonic crystal fibers; (240.6680) Surface plasmons

Surface plasmons, propagating at the metal/dielectric interface, are extremely sensitive to changes in the refractive index of the dielectric. To excite efficiently a surface plasmon, the phase matching condition between a plasmon and a waveguide mode has to be satisfied. Over the past decade, driven by the need for miniaturization of SPR sensors, various compact configurations enabling coupling between optical waveguide modes and surface plasmonic waves [1, 2, 3, 4] and, recently, holey fibers [5] have been investigated. In a single mode waveguide-based sensor, phase matching between plasmon and fundamental waveguide mode is typically hard to realize. This is related to the fact that the effective refractive index of a core guided mode is close to the refractive index of the core material, which is typically larger than 1.45. The effective refractive index of a plasmon is close to the refractive index of an ambient medium which is typically air $n_a = 1$ (gas sensing) or water $n_a = 1.3$ (biological sensing). Thus, large discrepancy in the effective indices makes phase matching between the two modes hard to achieve, with an exception of the high frequencies ($\lambda < 650nm$), where the plasmon dispersion relation deviates towards higher refractive indices.

In this paper, we present design principles of a novel photonic bandgap fiber-based SPR sensors, and show, in photonic bandgap fiber-based SPR sensors, fundamental Gaussian-like leaky core mode can be phase matched with a plasmon at higher wavelength, thus enabling sensing even in near-IR. The effective refractive indices of the leaky core modes can be arbitrarily smaller than that of a waveguide core material, thus enabling phase matching with a plasmon at any desirably frequency. Using such a leaky mode for sensing can also give the additional advantage of an effectively single mode propagation regime [6]. Our proposed design is a SPR sensor based on a honeycomb photonic crystal fiber operating at 1060 nm. We further demonstrate a novel sensing mechanism based on the detection of breaking of an degeneracy between the two plasmonic excitations, the plasmonic excitations on the analyte/metal and the glass/metal interfaces.

In Fig. 1(a) the schematic of the honeycomb photonic crystal fiber-based SPR sensor is presented. The design parameters are chosen as follows, the center to center distance between adjacent holes is $\Lambda = 0.77\mu m$, the cladding hole diameter is $d = 0.55\mu m$, the diameter of the hole in the core center is $d_c = 0.35\mu m$. The fiber is made of silica glass with a refractive index of $n_{\text{glass}} = 1.45$, the core and cladding holes are filled with air $n_{\text{air}} = 1$, while the large semi-circular channels are plated with a 40nm thick layer of gold and filled with an aqueous analyte $n_a = 1.32$. The central hole in the fiber core lowers its effective refractive index compared to that of a silica cladding. Under certain conditions, such a core can support a mode confined by the bandgap of the honeycomb reflector. Guided by the bandgap of the fiber reflector, the effective refractive index of the core mode can be made much lower than that of the silica material. Moreover, radiation loss of a bandgap guided core mode can be reduced by adding more layers into the honeycomb reflector. The main reason why we chose a honeycomb structure of the fiber reflector is because it enables a very large photonic bandgap [6], thus simplifying considerably phase matching of the core guided and plasmonic modes. We design the fiber so that two plasmonic peaks are degenerate at 1009nm with $n_{\text{analyte}} = 1.32$. Fig. 1(b) shows the dispersion relations of the Gaussian-like core mode (thick solid line), analyte bound plasmonic mode (thin solid line with circles) and cladding bound plasmonic mode (thick solid line). Corresponding flux distributions of the core guided and plasmonic modes are presented in Fig. 1(c). The core mode loss shows a single plasmonic peak (solid curve in Fig. 1(d)). When the refractive index of the analyte is varied, this affects the two plasmonic dispersion relations differently. Particularly, the analyte bound plasmon mode is affected much
The sensitivity of the honeycomb fiber-based SPR sensor is achieved at 1009 nm, which is, to our knowledge, the highest reported spectral sensitivity of RIU, which is, to our knowledge, the highest reported spectral sensitivity of an aqueous fiber-based SPR sensor. Finally, in Fig. 1(e), we present the amplitude sensitivity of the proposed sensor modes. Dispersion relation of the fundamental core mode (thick solid curve), analyte bound plasmonic mode (dashed curve with circles), and cladding bound plasmonic mode (dashed curve). The bandgap of an infinitely periodic reflector is shown as a clear region. c) The energy flux distributions across the fiber cross-section are shown for the fundamental core mode (II) as well as the analytic and cladding bound plasmon modes (I,III) outside of the phase matching region. d) The solid curve shows loss of the fundamental core mode near the degenerate phase matching point with two plasmonic modes and $n_{analyte} = 1.32$. Due to degeneracy, only one peak is distinguishable in the loss curve. Dashed line shows splitting of the degeneracy in plasmonic modes when the analytic refractive index is changed to $n_{analyte} = 1.322$. e) Dependence of the sensor amplitude sensitivity on wavelength.

Fig. 1. Solid core honeycomb photonic crystal fiber-based SPR sensor. a) Schematic of the sensor. The solid core having a small central hole is surrounded with a honeycomb photonic crystal reflector. Two large channels are integrated to implement analyte access to the fiber reflector region. The channels are gold plated for plasmon excitation. The gold layer is bordered by an aqueous analyte. b) Band diagram of sensor modes. Dispersion relation of the fundamental core mode (thick solid curve), analytic bound plasmonic mode (dashed curve with circles), and cladding bound plasmonic mode (dashed curve). The bandgap of an infinitely periodic reflector is shown as a clear region. c) The energy flux distributions across the fiber cross-section are shown for the fundamental core mode (II) as well as the analytic and cladding bound plasmon modes (I,III) outside of the phase matching region. d) The solid curve shows loss of the fundamental core mode near the degenerate phase matching point with two plasmonic modes and $n_{analyte} = 1.32$. Due to degeneracy, only one peak is distinguishable in the loss curve. Dashed line shows splitting of the degeneracy in plasmonic modes when the analytic refractive index is changed to $n_{analyte} = 1.322$. e) Dependence of the sensor amplitude sensitivity on wavelength.

References