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ABSTRACT

Unique effects of terahertz (THz)-wave–matter interaction push rapid progress in THz optoelectronics aimed at bridging the problematic
THz gap. However, majority of modern methods of THz spectroscopy and imaging are still hampered by low spatial resolution. Common
lens/mirror-based THz optics fails to overcome the Abbe barrier and usually provides resolution larger than a free-space wavelength k (i.e.,
hundreds of micrometers or even few millimeters). To mitigate this difficulty, supperresolution THz imaging modalities were introduced
recently, among which we particularly underline different methods of THz scanning-probe near-field microscopy. They not only rely on
strong light confinement on sub-wavelength probes and provide resolution down to �10�1–10�3k but also suffer from small energy effi-
ciency or presume an interplay among imaging resolution, signal-to-noise ratio, and performance. In this paper, we consider reflection-mode
THz solid immersion (SI) microscopy that offers some compromise between the high imaging resolution of 0:15k and high energy efficiency,
which is due to the absence of any subwavelength probe in an optical scheme. Recent achievements, challenging problems, and prospects of
SI microscopy are overviewed with an emphasis on resolving the inverse problem and applications in THz biophotonics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085906

THz technology is rapidly developed nowadays,1–5 which is
driven by the unique features of THz-wave–matter interactions6 and
prospects of THz tools in different branches of science and technology
such as astrophysics,7,8 condensed matter physics and materials sci-
ence,9,10 chemistry and pharmaceutical industry,11 food science,12

nondestructive testing,13 beyond 5G communications,14 medical diag-
nosis,15,16 and therapy.17

The aforementioned applications of THz technology suffer from
low spatial resolution of commonly used THz optical systems.2,6,15

They usually utilize lens- or mirror-based optics, the resolution of
which obeys the ’ 0:5k Abbe diffraction limit of free-space focusing.
Due to large THz wavelengths, resolution of such systems appears at
the scale of few hundreds of micrometers or even few millimeters,
even for a wide-aperture optics.18 Overcoming this barrier is of partic-
ular importance in THz biophotonics,6,15,17 where the limited resolu-
tion does not allow to study subwavelength tissue heterogeneties,

detect small-scale neoplasms, accurately delineate the tumor margins,
and locally expose tissues to THz waves. Moreover, it limits the dimen-
sions of defects, which can be detected during THz nondestructive
testing, or the diversity of materials, which can be studied in the THz
range.

To address this challenge, recently, numerous approaches to
improve the spatial resolution of THz spectroscopy and imaging have
been proposed.2,6,15 First, we consider modern methods of image
reconstruction, which form an inexpensive approach to boost the per-
formance of almost any THz imaging system. They rely on modeling
of the imaging system point spread function followed by the image
reconstruction via the deconvolution or inverse filtering.19 The resul-
tant resolution enhancement is on the order of tens of percent, but it
still obeys the Abbe limit. Another option is based on THz digital
holography, synthetic aperture, and computational imaging,20–22

which are capable of slightly sub-wavelength resolution, but still
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cannot overcome the Abbe diffraction limit. They also require compli-
cated techniques to resolve the inverse problems and are accompanied
by unique image noises and distortions that somewhat limits their
practical utility.

Other prospective modalities of superresolution THz imaging
rely on the photonic jet phenomenon.23–25 The term “photonic jet”
describes electromagnetic beam confinement at the shadow side of a
mesoscale dielectric particle illuminated by a plane or slightly conver-
gent wave with the resultant lateral dimensions of beam caustic as
small as�10�1k. This effect allows us to boost the resolution of almost
any THz focusing system by simply placing a judiciously designed
dielectric particle in front of the focal plane.24 At the same time, prob-
lems of a dielectric particle handling near the focal plane and its mov-
ing over the object surface somewhat limit practical utility of this
principle.

Then, one can consider different methods of THz scanning-
probe near-field optical microscopy (SNOM) that can be classified
into the tip- and aperture-based ones. The tip-based SNOM detects
the THz field scattered by a metal or dielectric cantilever, which is
placed in close proximity to an object with the resultant resolution
down to 10�2k–10�4k.26,27 Particularly, such an advanced resolution
allows one to map the THz conductivity in semiconductor materials
and devices.28,29 We should note several exotic THz imaging modali-
ties, which are based on a tapered Sommerfeld wire30 and a wire
medium,31,32 providing the resolution of � 10�1k due to plasmonic
mode confinement on a metal wire. One should also emphasize a flexi-
ble sapphire fiber33 and a sapphire fiber bundle34 allowing the resolu-
tion of � 2–5� 10�1k, thanks to a guided mode confinement in a
solid core of a high-refractive-index fiber that can also be attributed to
the discussed above tip-based SNOM.

In turn, the aperture-based SNOM uses subwavelength dia-
phragms to either illuminate an object or collect the scattered THz
field at its shadow side, while their resolution is mainly determined by
the aperture dimensions that can be as small as �10�1–10�2k.35–37
Despite the beneficial resolution, all SNOM systems suffer from a low
optical throughout due to the use of subwavelength tips and apertures
in an optical scheme. Therefore, to achieve appropriate image quality,
SNOM generally requires powerful emitters, sensitive detectors, and
long image acquisition times. This difficulty can be partially mitigated
using innovative coded-aperture near-field THz microscopy38 or laser
scanning-point THz source microscopy.39,40 Nevertheless, all SNOM
techniques require a very small working distance between the scanning
probe and an imaged objects; thus, the probe may interact with an
object and even perturb its structure and distort the THz image.
SNOM systems have limited capabilities in imaging of amorphous
media and soft biological tissues, which considerably limit their utility
in THz biophotonics and medical imaging. Thereby, the discussed
SNOM systems are still remain the laboratory research tools.

In this review, we focus on SI microscopy, which was first intro-
duced in 1990 to achieve subwavelength resolution in the visible (VIS)
and infrared (IR) ranges41 and recently transferred to the millimeter-
wave and THz ranges.42–44 The essence of the SI effect is a reduction
in the electromagnetic-beam caustic (focal spot) dimensions, when the
beam is focused in free space at a small distance (� k) behind the
high-refractive-index optical element (i.e., the so-called SI lens) with a
contribution of evanescence waves of the total internal reflection
(TIR).45 Typically, the SI optical system consists of two parts:

• the basic wide-aperture lens that provides high spatial resolution
itself but still obeys the diffraction barrier, and.

• the high-refractive-index SI lens that is placed in front of the
imaging plane and serves as a resolution enhancer.

Figure 1 shows the common reflection-mode hemispherical SI
lens, which is radiated from the top side by a focused electromagnetic
wave formed by a basic wide-aperture lens. The spherical surface of
the SI lens is concentric for the converging wavefront in order to avoid
refraction and related chromatic aberrations, while its flat surface coin-
cidences with the object plane. Here, nSI and nobj stand for the refrac-
tive indices of the SI lens material and an imaged object, respectively.
A spherical electromagnetic wave enters the SI lens and then is
reflected at the SI lens–object (free space) interface and divided into
two parts. For incidence angles h below the critical TIR angle
h < hTIR ¼ arcsinðnobj=nSIÞ, the ordinary reflection occurs, while for
higher angles h � hTIR, the TIR effect takes place, and the evanescent
waves are excited at the analyzed interface. Both ordinary and evanes-
cent waves contribute to formation of the subwavelength beam caustic,
which exists at the shadow side of this interface.

The resolution enhancement through a SI lens can be explained
by a reduction in the electromagnetic wavelength near the analyzed
interface (as compared to a free-space wavelength k) for both
ordinary-reflected and evanescent waves. Indeed, the ordinary wave
travels inside the high-refractive-index SI lens material and, thus, has
the wavevector kord and wavelength kord of

kord ¼ knSI; kord ¼
k
nSI

; (1)

where k is a free-space wavevector. Here, kord is nSI-times smaller than
k. The evanescent wave propagates along the SI lens–object interface54

and has the wavevector kevan and the effective wavelength kevan of

FIG. 1. Schematic of the reflection-mode SI lens based on a high-refractive-index
hemisphere. Here, a basic wide-aperture lens that forms a convergent wavefront is
not shown for simplicity.
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kevan ¼ knSI sin hð Þ; kevan ¼
k

nSI sin hð Þ
: (2)

Here, kevan is also reduced by a factor of nSI sin ðhÞ or �nSI at
high angles h. Such a wavelength reduction underlies the common
’ nSI-times reduction in the focal spot dimensions provided by most
SI lenses. Standard analytical approaches of geometrical optics and
scalar diffraction theory54,55 fail to describe all peculiarities of beam
focusing by a SI lens, such as the exact focal spot geometry, system res-
olution, and depth of fields. This is due to a wide beam aperture and a
near-field operation regime of such systems. To analyze the details of
SI lens performance, methods of computational electrodynamics are
usually used, which allow one to take into account such effects as inter-
play among ordinary and evanescent waves, electromagnetic beam
polarization, apodization, and aberrations.49,56–62

Since its discovery, the SI optics was vigorously explored and
transferred to other spectral ranges and found a variety of applications.
As it is highlighted in Fig. 2, different SI lens arrangements were stud-
ied to meet the demands of supperresolution imaging and exposure in
the VIS and IR ranges. Figure 2(a) shows a hyperhemispherical super-
SI lens with radius R and height h ’ Rð1þ 1=nSIÞ. Thanks to the
additional electromagnetic-wave refraction at the spherical surface of a
lens, the resolution enhancement can reach �n2SI, but such a lens suf-
fers from material dispersion and chromatic aberration.46,63 In
Figs. 2(b) and 2(c), concepts of the diffractive47 and annular-aperture
SI lenses48,49 are illustrated. They are aimed at reducing the SI lens
dimensions, improving its resolution or field of view. As a particular
example of the annular-aperture SI lens, in Ref. 64, the angles h above

the critical TIR one hTIR were selected, while the ordinary beam part
was blocked. This allows excitation of only the evanescent waves, thus,
localizing the beam caustic in the axial direction. Figures 2(d) and 2(e)
show two distinct microfabricated SI lenses, developed for the IR
(9.5lm)50 and VIS51 ranges. In Figs. 2(f) and 2(g), a planar VIS SI par-
abolic mirror coupled to a planar waveguide is shown along with a
resultant light intensity distribution formed by such an element at
413 nm and measured via SNOM.52 Finally, in Figs. 2(h)–2(j), we
show a metamaterial-based VIS SI lens made of the self-assembled
TiO2 nanoparticles and superresolution images collected by this
system.53

From Fig. 3, we notice that SI optics found a number of applica-
tions in different branches of science and technology. First, we consider
applications of the SI lens in lithography.65,72 For example, Fig. 3(a)
shows an atomic force microscopy image of lines in a photoresist
(Shipley SPR 3001) on a silicon wafer that is formed by VIS (442nm)
SI photolithography and possesses the subwavelength width and depth
of ’ 190 and 50nm.65 SI microscopy was applied for thermal imag-
ing,66,73 including the studies of heat dissipation in electrical circuits.
For example, Fig. 3(b) shows the modulated thermal image of a gold
resistor dissipating 609mW power that is collected through a 500-lm-
thick silicon substrate via a 440-nm-resolution near-IR (1.0–1.7lm) SI
lens.66 Moreover, SI optics is considered as a prospective tool for optical
data storage.67,74–76 As an example, in Fig. 3(c), we show the VIS
SNOM image of marks in a phase-change sample formed on a glass
substrate by a 5nm-thick ZnS-SiO2 dielectric layer, a 20-nm-thick
Ge2Sb2Te5 phase-change layer, and a 120-nm-thick ZnS-SiO2 dielectric
layer.67 These marks were written using a near-IR (0.83lm) parabolic

FIG. 2. Different SI lens arrangements. (a)–(c) Schematics of the super-SI (or Weierstrass),46 diffractive,47 and annular-aperture48,49 SI lenses. (d) and (e) Microscopy of the
microfabricated middle-IR and VIS SI lenses. Panels (d) and (c) are reproduced with the permission from Fletcher et al., Appl. Phys. Lett. 77, 2109–2111 (2000). Copyright
2000 AIP Publishing; and Lerman et al., Appl. Phys. Lett. 89, 223122 (2006). Copyright 2006 AIP Publishing, respectively. (f) Microscopy of the planar VIS SI parabolic mirror
coupled to a planar waveguide and (g) measured light intensity distribution. Panels (f) and (g) are reproduced with the permission from Challener et al., Opt. Express 13,
7189–7197 (2005). Copyright 2005 The Optical Society. (h) Schematic of the metamaterial-based VIS SI lens and its applications for imaging of (i) a nanopatterned wafer and
(j) a blue-ray disk. Panels (h)–(j) are reproduced with permission from Fan et al., Sci. Adv. 2, 40–42 (2016). Copyright 2016 Authors, licensed under a Creative Commons
Attribution (CC BY) license.
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SI mirror [similar to that from Fig. 2(f)], while the distance between the
neighboring marks is slightly subwavelength’ 0:5 lm. In Fig. 3(d), we
show the results of near-IR SI measurements of the photoluminescence
spectrum and the image of an individual InGaAs/GaAs quantum dot.68

The data were collected with the spatial resolution of 350nm, while the
excitation laser energy and the sample temperature were 1.476 eV and
8K, respectively.

Moreover, SI microscopy was applied for studying the Raman
effect in dielectrics and semiconductors.51,69,77 In Fig. 3(e), the SI
Raman image of a micropatterned transparent organic conductor film
placed on a polyethylene terephthalate substrate is shown.69 A 785nm
diode laser was used to excite the sample, while the resultant image
represents a 440 cm–1 peak area in the observed Raman spectrum.
Among the most promising applications of SI microscopy, we should
notice nondestructive testing of semiconductor devices and electrical
circuits.64,68,70,71,78–80 In Figs. 3(f)–3(i), nondestructive testing of a
multilayer integrated circuit using near-IR (1.2lm) subsurface SI
microscopy is shown, where the lateral and axial resolution are of 0.26
and 1.24lm, respectively;70 while in Fig. 3(g), we show the electrolu-
minescence emission VIS (700nm) SI image of a degraded AlGaN/
GaN transistor obtained through a SiC substrate with the lateral and
axial resolution of 0.3 and 1.7lm, respectively.71 Finally, to highlight a
potential of SI microscopy in biology and medicine, we show the fluo-
rescence image of transporter protein PH1735 fused with enhanced

green fluorescent protein in Escherichia coli cells [see Fig. 3(k)] that
was obtained via the cryo-compatible (77K) super SI microscope with
strongly subwavelength resolution.63

Since the principles of SI microscopy were translated to the THz
range,42–44 this approach has found a number of applications, in par-
ticular, in THz biomedicine.6,15 In Refs. 81 and 84, our group intro-
duced an original arrangement of the THz SI microscope. It uses a
backward-wave oscillator, as a source of continuous-wave THz radia-
tion with the output frequency of 0.6THz (or the wavelength of
k ’ 500 lm), and a Golay cell, as a detector of the THz beam power.
Figure 4(a) demonstrates the schematic of our SI optical system, which
is a crucial element of our THz SI microscope.81,84 The optical system
comprises three elements:

• a rigidly fixed wide-aperture aspherical lens18 made of high-
density polyethylene (HDPE) and featuring the diameter and
focal length of 25 and 15mm, respectively;

• a rigidly fixed hypohemispherical lens made of high-resistivity
float-zone silicon (HRFZ-Si) and featuring the diameter and
thickness of 10 and 4.65mm, respectively; its spherical surface is
concentric to the convergent wavefront, while its flat surface is
perpendicular to the optical axis;

• a movable plane HRFZ-Si window, placed in close contact with
the flat surface of HRFZ-Si hemisphere and featuring the diame-
ter and thickness of 50mm and 250lm, respectively.

FIG. 3. Applications of SI optics in the VIS and near-IR ranges. (a) Photoresist film patterned by SI-lens-based photolithography. Panel (a) is reproduced with permission from
Ghislain et al., Appl. Phys. Lett. 74, 501–503 (1999). Copyright 1999 AIP Publishing. (b) Near-IR SI imaging of a gold resistor dissipating heat. Panel (b) is reproduced with per-
mission from Tessier et al., Appl. Phys. Lett. 90, 171112 (2007). Copyright 2007 AIP Publishing. (c) Marks in a phase-change coating written by a near-IR parabolic SI mirror.
Panel (c) is reproduced with permission from Peng et al., Appl. Phys. Lett. 87, 151105 (2005). Copyright 2005 AIP Publishing. (d) Photoluminescence near-IR SI spectroscopy
and imaging of a single quantum dot. Panel (d) is reproduced with permission from Liu et al., Appl. Phys. Lett. 87, 071905 (2005). Copyright 2005 AIP Publishing. (e) Raman
SI image of a micropatterned transparent organic conductor film. Panel (e) is reproduced with permission from C. Michaels, J. Raman Spectrosc. 41, 1670–1677 (2010).
Copyright 2010 John Wiley & Sons. (f)–(i) Subsurface near-IR SI microscopy of a multilayer integrated circuit. Panels (f)–(i) are reproduced with permission from Koklu et al.,
Opt. Express 16, 9501 (2008). Copyright 2008 The Optical Society. (j) and (k) Electroluminescence emission VIS SI microscopy of a degraded AlGaN/GaN transistor. Panels
(j) and (k) are reproduced with permission from J. Pomeroy and M. Kuball, J. Appl. Phys. 118, 144501 (2015). Copyright 2015 AIP Publishing. (l) Fluorescence cryogenic
super-SI microscopy of E. coli cells. Panel (l) is reproduced with permission from Wang et al., Commun. Biol. 2, 74 (2019). Copyright 2019 Authors, licensed under a Creative
Commons Attribution (CC BY) license.
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The system has the maximal aperture angle of hmax ’ 40�, while
HRFZ-Si has the refractive index of nHRFZ�Si ’ 3:415 with negligible
chromatic dispersion and absorption in the THz range.

In our THz SI lens, the HRFZ-Si hypohemisphere and window
form a unitary optical element—a HRFZ-Si hemispherical SI lens,
which serves as a resolution enhancer. At the same time, the HRFZ-Si
window is mounted on a motorized translation stage and can be dis-
placed in lateral directions. In this way, such a composite SI lens con-
struction allows imaging of amorphous objects and soft biological
tissues ex vivo, handled at its shadow side by raster scanning of their
surface with a focused THz beam.

Figures 4(b)–4(d) show that our THz SI microscope provides the
resolution down to � 0:15k, when operating with free space at the
shadow side of a SI lens. This resolution estimates were obtained
experimentally by studying semi-infinite metal test objects with abrupt
reflectivity changes, as described in Ref. 81. Also, we reported in Ref.
85 that our system has a small depth of field 0.1–0:2k and large toler-
ances (�k) for the optical elements alignment.

Evidently, resolution of SI microscopy depends on the optical
properties of an imaged object, similarly to any other near-field imag-
ing modality. For our THz SI lens, this dependency was studied in
Ref. 82. Our numerical and experimental findings revealed that optical
properties of an imaged object regulate the TIR conditions at the SI
lens–object interface, as well as a contribution of the ordinary and eva-
nescent waves to the beam caustic formation. As shown in Figs. 4(e)
and 4(f), the resolution remains strongly sub-wavelength 0.15–0:4k
for the wide range of the object refractive indices nobj 2 ð1:0; 5:0Þ
and power absorption coefficients aobj 2 ð0; 400Þ cm�1. Two regimes
of SI microscopy were identified. The first is the TIR regime that
appears when the object refractive index is relatively low, and the

sub-wavelength resolution is enabled by both ordinary and evanescent
waves at the SI lens–object interface. The second is the ordinary reflec-
tion regime that occurs when the object refractive index is high
enough, so that there is no more TIR effect at the interface, and only
the ordinary waves inside a SI lens material are responsible for the SI
lens superresolution. Given linear nature of Maxwell’s equations, these
results are applicable for analysis of SI lenses operating in other spec-
tral ranges.82

To demonstrate practical utility of THz SI microscopy, it was
applied to study objects of different nature such as electrical circuits
and soft biological tissues ex vivo.81,84–86 Particularly, the superresolu-
tion THz images of a plant (poinsettia) leaf with subwavelength veins,
submillimeter-diameter cell spheroids (made of chondrocytes from
the articular hyaline cartilage of male sheep), fibrous connective tissues
of the human breast (with embedded separate subwavelength fat cell
and mammary gland ducts), muscle tissues of the human tongue
(formed by subwavelength longitudinal and transverse muscle fibers),
as well as tissues scaffolds (decellularized bovine pericardium collagen
matrices) were measured and analyzed. The observed data have
revealed strongly subwavelength features of tissues and have con-
firmed superresolution capabilities of our microscope, as well as its
prospects in THz biophotonics.

Despite the widespread use of SI microscopy in the VIS and IR
ranges, as well as recent achievements in the THz range, this approach
usually results in qualitative images that represent only the raw distri-
butions of the backscattered field intensity over the object surface.
Meanwhile, unlocking information about the physical properties of an
object, such as its complex refractive index ~nobj, requires resolving the
inverse problem of SI microscopy. To address this challenge, in
Ref. 83, the quantitative superresolution SI microscopy technique was

FIG. 4. Composite THz SI lens for imaging of amorphous objects and soft biological tissues ex vivo. (a) Schematic of a SI lens comprising a wide-aperture HDPE aspherical
singlet, a rigidly fixed HRFZ-Si hypohemisphere, and a movable HRFZ-Si window (sample holder), where the hypohemisphere and window form a unitary hemispherical optical
element. (b)–(d) Experimental estimation of the SI lens resolution (in free space—nobj ¼ 1:0) based on imaging of a metal test object. Panels (a)–(d) are reproduced with per-
mission from Chernomyrdin et al., Appl. Phys. Lett. 113, 111102 (2018). Copyright 2018 AIP Publishing. (e) Three-dimensional finite-element frequency-domain (3D-FEFD)
modeling of the THz field intensity distribution I / jEj2 in the axial cross section of the SI lens at 0.6 THz, when the imaged object has the refractive index of nobj ¼ 2, the
absorption coefficient of aobj ¼ 0, and the thickness of 10k. (f) Normalized resolution r=k of the SI lens estimated as a THz beam spot FWHM as a function of the refractive
indices n of a 10k-thick loss-less (aobj ¼ 0) object for two orthogonal polarizations. In (f), the resolution is compared with the experimental estimates from Ref. 82. Panels (e)
and (f) are reproduced Chernomyrdin et al., Optica 8, 1471 (2021). Copyright 2021 The Optical Society.
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developed and implemented to the THz frequency range. This method
allows reconstruction of the refractive index distribution at the imag-
ing plane with subwavelength resolution, while only the intensity mea-
surements are performed.

At each point of the imaged object surface, this method retrieves
its complex refractive index as

~nobj ¼ nobj � i
c0
4p�

aobj; (3)

where c0 ’ 3� 108 m/s is the speed of light in free space, and the
absorption aobj is defined by power via minimization of the error func-
tion, which characterizes discrepancy between the experiment data
and analytical model

~nobj ¼ arg min~nobj

Iobjexp

Irefexp
�
Ith ~nobj
� �

Ith ~nrefð Þ

" #
; (4)

where Iobjexp and Irefexp are the experimentally measured sample and ref-
erence signals that represent intensities of the electromagnetic fields,
which are back-scattered from the SI lens, respectively; Iobjexp is obtained
for an imaged object, while Irefexp is for a reference medium with known
complex refractive index ~nref . In Ref. 83, we use air as such a reference
medium (~nref ¼ 1:0), while other options are also available. The sam-
ple signal Iobjexp is normalized by a reference one Irefexp to filter out a con-
tribution of the Si microscope response function.

In Eq. (4), the function Ithð~nobjÞ stands for a model of the back-
scattered field intensity, which can be either defined analytically or
computed numerically for a SI lens with an imaged object at its
shadow side that has a form of a thick (� k) slab with the complex
refractive index ~nobj. This model should incorporate all the key fea-
tures of the electromagnetic-wave interaction with the SI lens and an
object: contributions of the ordinary and evanescent waves, wide beam
aperture, light polarization and coherence length, standing waves
inside a SI lens, etc. Thanks to a quite simple geometry of our THz SI
lens, in Ref. 83, the fully analytical model was derived, which was then
proved via full-vector numerical analysis.

Since it is impossible to estimate two variables nobj and aobj
relying only on a single measured intensity value I exp, some physical
relation between nobj and aobj should be defined, thus, restricting the
developed method generality. For this purpose, in Ref. 83, a particular
case of the developed method operation is considered—i.e., THz
microscopy of hydrated biological tissues, the effective THz dielectric
response of which is commonly interpreted within the effective
medium theory and determined completely by the content of tissue
water,87 while the latter also plays a role of main endogenous label of
pathological processes.6,15,17 In this way, THz dielectric response of
tissues can be modeled based on that of bulk water ~nH2O, dehydrated
tissues ~ndry, and the tissue water content C using, for example, the
Bruggeman effective mediummodel

~n2
H2O � ~n2

obj Cð Þ
~n2
H2O þ 2~n2

obj Cð Þ
C þ

~n2
dry � ~n2

obj Cð Þ
~n2
dry þ 2~n2

obj Cð Þ
1� Cð Þ ¼ 0: (5)

Thus, Eqs. (4) and (5) yield quite accurate predictions for both the
complex refractive index ~nobj and water content C in tissues.83

The developed quantitative superresolution THz SI microscope
was used to study ex vivo the freshly excised (hydrated) intact brain

tissues and glioma model 101.8 from rats.83,88 The THz neurodiagnosis
of brain tumors attracts considerable attention thanks to the label-free
character of contrast between intact tissues and tumors, which was
reported for both glioma models from animals and human brain glio-
mas ex vivo.89 The refractive index nobj and absorption coefficient aobj
distributions, as well as the tissue water content C, observed in the THz
data from Fig. 5, overall agree with the previous studies involving differ-
ent diffraction-limited THz spectrometers and imaging systems.89 Thus,
as compared to other experimental techniques, quantitative THz SI
microscopy provides reasonable estimates of higher refractive indices,
absorption coefficient, and water content in a tumor as compared to the
intact tissues. Additionally, superior resolution of our THz SI micro-
scope revealed considerable heterogeneity of the brain tissues at scale
posed by the THz wavelengths. From Fig. 5, we notice a pronounced
difference between the THz response of the white matter and gray mat-
ter (cortex), as well as the tumor heterogeneity that can be attributed to
a number of factors such as the tumor cells’ accumulations, vessels,
hemorrhages, and necrotic debris.

Our findings highlighted that THz SI microscopy has few impor-
tant advantages over the existing modalities of THz spectroscopy and
imaging. Among them are its superior resolution, high energy effi-
ciency, and an ability to extract quantitative information about an
object such as distributions of its complex refractive index ~nobj, water
content C (in hydrated media), or other physical quantities. In our
opinion, these advantages allow the developed technique to be used in
a number of demanding fields in material sciences, nondestructive
testing, chemistry, pharmaceutical industry, and biomedicine.
Particularly, it can be used to study the Mie scattering of THz waves
and the THz-wave transport in heterogeneous objects54 or in medical
diagnosis of malignant and benign neoplasms with different nosolo-
gies and localizations.15

At the same time, we can point out several ways to further
improve the THz SI microscopy performance and, thus, to extend its
considerable practical utility. The resolution of our imaging system
can be further enhanced by substituting the HRFZ-Si with another
THz optical material for SI lens fabrication that has higher THz
refractive index along with an appropriate THz-wave absorption.
As candidates, bulk sapphire (a-Al2O3)

34 and rutile (TiO2)
90

crystals, TiO2 nanoparticle-based composites,91 PbTe and GeTe,92 or
high-refractive-index metamaterials53 can be mentioned. We should
stress that many high-refractive-index crystalline optical materials, such
as sapphire or rutile, possess considerable optical anisotropy. Effects of
crystal anisotropy and orientation, as well as electromagnetic-beam
polarization on the SI microscopy performance should be carefully
studied when designing such crystalline SI lenses.

The THz SI microscope performance is strongly limited by the
duration of image acquisition, which is due to inertness of a scanning
system and a Golay cell. To considerably boost the THz SI microscope
performance, one can imply multipixel detectors93 and fast rotary
delay stages.94 THz SI microscopy can be generalized for direct imag-
ing of the complex (absorbing) media using the field amplitude detec-
tors such as THz photoconductive antennas.1,4 Indeed, by detecting
and analyzing both the intensity and phase of the backscattered field
in a SI microscope, it is possible to unambiguously estimate the refrac-
tive index nobj and absorption coefficient aobj of an imaged object
without any physical assumptions on the object material properties.
It is also worth noting that the developed SI lens reflectivity model83
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can be easily generalized to interpret such complex signals in different
spectral ranges.

Various electro- and magneto-dipole excitations of matter can
underlie the linear and nonlinear electrodynamic response of an object
in different spectral ranges, while only linear complex dielectric permit-
tivity (or complex refractive index) can be studied using the discussed
quantitative SI microscopy method.83,86,88 Thus, this method is still to
be adapted for studying the magnetic permeability and non-linear elec-
trodynamic characteristics of a sample. The resultant method has a
potential not only in biophotonics but also in other branches of funda-
mental and applied physics, including condensed matter physics, mag-
netism, nonlinear optics, and semiconductor electronics.

Despite the object-dependent character of a SI lens was reported
in Ref. 82, the THz beam focusing in such systems can be also affected
by heterogeneous character and scattering properties of an object. The
investigation of such effects as well as the development of approaches
for mitigating them (for example, modern method of immersion opti-
cal clearing95) can be considered as a promising topic for the further
research in the field of THz SI microscopy.

SI microscopy should not be confused with other imaging modal-
ities that also rely on the TIR and near-field phenomena. Among
them, we first consider microscopy with the TIR excitation of a sam-
ple,96–98 which provides high contrast between a sample and a sub-
strate (a TIR prism), offers a variety of applications in biology and
medicine, but still obeys the Abbe barrier. We also notice that SI
microscopy differs from dielectric microparticle-assisted micros-
copy.99,100 The latter relies on the aforementioned photonic jet effect
or the whispering gallery modes, which yield strong electromagnetic-
wave confinement at the shadow side of a mesoscale (�k) dielectric
particle and result in a slightly subwavelength resolution of
�10�1k.23,101–103 Such imaging principles were vigorously explored in
the VIS and IR ranges and then translated to the THz band.24,25,104

However, they still suffer from a problem of small dielectric particle
handling in front of focal plane during imaging. Finally, in Ref. 105, it

was theoretically predicted that a favorable combination of the SI and
photonic jet effects in a single high-refractive-index dielectric particle
can boost the THz microscopy performance, but this concept is still to
be verified experimentally.

In conclusion, in this paper, we have considered principles of SI
microscopy, its technical realizations, and applications in the VIS and
IR ranges, as well as its recent translation to the THz band. We showed
that this THz imaging modality offers a compromise between the
superior resolution and high energy efficiency. Moreover, we demon-
strated that SI microscopy can be easily applied for solving the emerg-
ing problems of different branches of THz science and technology. We
also discussed recent achievements and challenging problems of THz
SI microscopy.
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