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output planes of waveguide flanges connected with ports 2 and 1 at the focal points of PCL1 and PCL2 (see Fig. S6(b)). The transmission spectrum received at the output port 1 was recorded when the THz light was launched into the port 2. Then, by clockwise rotating the rotary section by 90°, the transmission spectrum at port 3 was measured. To estimate the amount of THz power that is coupled into the input port, the THz coupler was then replaced by a straight waveguide and the transmission spectrum was measured with the same incident THz light (see Fig. S6(b)) (The measurement process is detailed in Supplementary Material 3.1). The reference spectrum (i.e. the maximum amplitude of the coupled THz light) was derived from this transmission spectrum by, 
ref straight st= / exp(- ) /straightt t l Clα                (S4) Additionally, the transmission spectrum of a two-wire waveguide bend featuring the same geometry of half of a THz coupler (see Fig. 4(b)) was choose as a control of that of the THz coupler. The transmission spectrum of the waveguide bend was measured with the same incident THz light (the process is detailed in supplementary material 3.2).  

6. The characterization of two-wire waveguide-based 
Add-Drop Multiplexer (ADM) 

 Fig. S7. (a). The experimental setup to characterize the THz ADM. (b) Transmission amplitude of the ADM with and without paper-based metalized periodic pattern inserted into the integrated WBG.  The characterization of the ADM was carried out as follows. Firstly, the THz coupler and WBG were assembled using the interconnects at the end facets of both waveguide components. Then, two WR6.5 conical horn antennas were connected to the In and Drop ports. The schematic of the experimental setup is shown in Fig. S7(a). When the THz light was launched into the In port, the transmission spectra received at the Drop port with and without the paper-based metalized periodic structure inserted into the WBG were measured (see Fig. S7(b)). For the purpose of clarity, the data points within the blue circle showing the resonance peak is presented in Fig. 6(c). 
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