High Bitrate Data Transmission Using Polypropylene Fiber in Terahertz Frequency Range

Kathirvel Nallappan
Dept of Electrical Engineering and
Dept of Physics Engineering
Polytechnique Montreal
Montreal, Canada
kathirvel.nallappan@polymtl.ca

Chahe Nerguizian
Dept of Electrical Engineering and
Polytechnique Montreal
Montreal, Canada
chahe.nerguizian@polymtl.ca

Hichem Guerboukha
Dept of Physics Engineering
Polytechnique Montreal
Montreal, Canada
hichem.guerboukha@polymtl.ca

Maksim Skorobogatyi
Dept of Physics Engineering
Polytechnique Montreal
Montreal, Canada
maksim.skorobogatyi@polymtl.ca

Yang Cao
Dept of Physics Engineering
Polytechnique Montreal
Montreal, Canada
yang.cao@polymtl.ca

Abstract— We present the experimental demonstration of real-time data transmission using long subwavelength dielectric fiber in the Terahertz (THz) frequency range. A commercial filament made of polypropylene material with the diameter of 1.75 mm is used as the solid core fiber for signal transmission. A photonics-based THz communication system operating at the carrier frequency of 140 GHz is used to characterize the fiber. The fiber is butt coupled at both emitter and detector antenna to minimize the free space coupling loss. The performance of the fiber is measured by recording the bit error rate (BER) for the transmitted data rate of 5 Gbps with a pattern length of 2^{31-1}. BER of 10^{-7} is recorded for the fiber error rate (BER) for the transmitted data rate of 5 Gbps with a pattern length of 2^{31-1}. BER of 10^{-7} is recorded for the fiber length of 3 m and 5 m respectively at the emitter photocurrent value of 8 mA. Finally, an error free data transmission using a 1 m fiber with the diameter of 670 µm is demonstrated successfully.

Keywords— Millimeter wave measurements, Terahertz communications, optical waveguides, Transmission line measurements

I. INTRODUCTION

Research in Terahertz (THz) frequency spectrum (100 GHz-10 THz) is advancing in several applications that includes communications [1], imaging [2] sensing [3] and spectroscopy [4]. To meet the bandwidth demand in high speed communications, a shift of carrier frequency towards THz band is particularly interesting [5]. So far, THz communications have been mainly demonstrated in free space wireless links due to the presence of several atmospheric transmission windows [6]. However, in wireless communications, a bulk optics is necessary to collimate and focus the THz beam at the transmitter and receiver respectively. Particularly, the THz wireless links are very sensitive to alignment errors which requires careful positioning of the antenna. The atmospheric weather conditions such as rain, snow, fog etc. play a major role in affecting the performance of a wireless THz link. Also, it is difficult to integrate the THz communication system with other components for signal processing applications in the case of wireless transmission. Therefore, a low loss THz transmission line is preferred. In the past years, several designs of THz waveguides have been proposed and demonstrated [7-14]. The choice of waveguide material is one of the major obstacles in achieving THz guidance with low loss and dispersion. In the case of metallic waveguides, the finite conductivity of metallic boundaries lead to higher ohmic losses whereas in dielectric waveguides, the loss is mainly due to material absorption [7]. By selecting proper materials with low absorption loss (Teflon, polyethylene, cyclic olefin copolymer to name a few) and engineering the waveguide structure, a highly efficient THz guidance can be achieved [15-18]. THz fibers with subwavelength dimension offers low loss when compared with the bulk material where most part of the mode field propagates in air [19]. Such fibers can be used to increase the communication link distance with high performance [20]. As the propagating mode in the subwavelength fiber is loosely confined, the THz components such as directional coupler, power divider, band pass filter etc. can be easily constructed for real-time signal processing applications [21].

In this work, we demonstrate the real-time data transmission using a long polypropylene (PP) fiber at the carrier frequency of 140 GHz. Among other polymers, PP is one of the cost-effective materials with low loss and low dispersion over a wide frequency range [22]. The THz refractive index of PP is ~1.5 [23].

II. EXPERIMENTS

A commercial 3D printing PP material (Verbatim) with the diameter (d) of 1.75±0.05 mm is used as a solid core fiber for THz transmission. Another fiber with subwavelength dimension is fabricated by reducing its size from 1.75 mm to 670±30 µm using a 3D printer (MakerBot Replicator). The temperature of the extruder is set to 220°C which is the process temperature of PP fiber for the extrusion. Though the nozzle size of the 3D printer is 400 µm, a fiber with ~670 µm is drawn by slowing down the pulling process. However, the uniform length of the subwavelength fiber is limited to 1 m due to fixed extrusion time of the 3D printer.

A finite element method-based software, COMSOL Multiphysics, version 4.2 is used to theoretically study the characteristics of the fiber. The power flow distribution of the fundamental mode in a PP fiber with the diameter of 1.75 mm (fiber 1) and 670 µm (fiber 2) at the carrier frequency of 140 GHz is shown in fig.1. In the case of fiber 1 most of the power propagates inside the solid core whereas in fiber 2, the mode is loosely coupled to the fiber...
and propagates mainly in air reducing the material absorption loss. The effective modal index of fiber 1 and 2 is 1.302 and 1.0001 respectively.

The fiber is experimentally characterized using a photonics-based THz wireless communication system as shown in fig.2. The detailed description of the system is presented in [24]. Briefly, the two-independently tunable distributed feedback laser operating in the infrared C-Band with slightly different center frequency is used to optically drive the photomixer. The laser beams are combined using a 3 dB coupler and intensity modulated (On-OFF keying) using an external electro-optic Mach-Zehnder modulator. A baseband signal source of pseudo random bit sequence (PRBS) with bit rate of 5 Gbps and pattern length of $2^{23}-1$ is used.

The baseband signal is then amplified using a high gain low noise amplifier and the bit error rate (BER) is measured using the test equipment (Anritsu -MP2100B). The output THz power of the photomixer is proportional to the DC bias voltage and input optical power. In fig.3, the THz output power at the carrier frequency of 140 GHz is presented which is recorded by fixing the DC bias voltage to -2 V. The nominal photocurrent of the photomixer is 7 mA where the corresponding THz power is ~ 5 dBm at 140 GHz.

III. RESULTS AND DISCUSSION

Before measuring the fiber, the THz transmitter and receiver is placed at 1 m, 3 m and 5 m apart with slightly different height and angle. As there is no collimating and focusing optics, it is confirmed that no stray THz beam is received in the detector. Therefore, the signal reception will be purely due to THz fiber only. Next, fiber 1 of length 5 m is butt coupled at both emitter and detector antenna to minimize the free space coupling loss. To hold the fiber steadily, we designed and fabricated several fiber holders. However, holding the fiber using a thin fisherman’s knot is simple and effective. The insert in fig.1 depicts the butt coupling and fisherman’s knot that is used to hold the fiber. By fixing the DC bias to -2 V, the optical power is varied using EDFA and BER is measured as a function of photocurrent of the photomixer. To record a highly consistent BER in short measurement duration, we choose the target BER of 10^{-12} in our experiments. For the target BER of 10^{-12}, and 5 Gbps bit rate, the duration of a single measurement is calculated as measurement time = $1/(\text{target BER} \cdot \text{bit rate}) \approx 200$ sec. The decision threshold is fixed as 0 mV and BER is recorded for fiber 1 with a length of 5 m followed by 3 m as shown in fig.4. It is observed that a high bit errors were recorded for 5 m fiber when compared with 3 m fiber which is mainly due to material absorption loss. Within the forward error correction (FEC) limit (BER $\sim 10^{-3}$), the photocurrent for 3 m and 5 m fiber is 3.2 mA and 4.4 mA respectively. Although we measure a higher eye amplitude in a 3 m fiber, the performance is not improved beyond the photocurrent of 5 mA. This is due to the vertical asymmetry (digital 1 and 0 have unequal amplitude from the threshold value) of the eye pattern as presented in fig.4. The small vertical asymmetry arises from the optical modulation itself which could be due to slight variation in the operating bias point of the electro-optic modulator.

![Fig.1. The power flow distribution of fundamental mode in a) fiber 1 and b) fiber 2 at the carrier frequency of 140 GHz](image)

![Fig.2. Schematic of the photonics-based THz communication system. Inset: Butt coupling of fiber to the antenna.](image)

![Fig.3. THz output power from the photomixer at the carrier frequency of 140 GHz (Courtesy of NTT Electronics).](image)

![Fig.4. Measured BER as a function of the emitter photocurrent for 3 m and 5 m PP fiber 1.](image)
Since the amplitude of digital 0 is close to the decision threshold point, the contribution of insertion error (digital 0 is mistaked as digital 1) is much higher to the total bit errors when compared with the omission errors (digital 1 is mistaked as digital 0) limiting the performance. However, the performance can be improved using optimized decision threshold.

Next, fiber 2 of length 1 m is characterized for the same bit rate of 5 Gbps as shown in fig.5. As the mode field mainly propagates in air, the material absorption loss is almost zero. The fiber is tightly held at both emitter and detector antenna without any bend and therefore the total loss (including the bending loss) is minimized in a short 1 m fiber link. Beyond the photocurrent value of 5 mA, we did not observe any errors within the measurement duration of 200 sec. Mostly, the THz integrated circuits and devices can be linked using a short length waveguides. Therefore, such THz fibers can be easily integrated in the real-time applications. The major disadvantage of sub-wavelength fibers is that they cannot be physically touched as it affects the propagating modal field. Also, the effect of fiber bend is high as the mode of the fiber is loosely confined to the fiber.

IV. CONCLUSION

To conclude, we have experimentally demonstrated the real-time data transmission using polypropylene THz fiber of length up to 5 m. A photonics-based THz communication system is used to characterize the THz fibers at the carrier frequency of 140 GHz. We observe that an error free data transmission with the data rate of 5 Gbps can be achieved for the fiber with sub-wavelength dimension. Such fibers can be used in the indoor applications such as data centers, device-to-device communications, KIOSK systems to name a few. Also, it is possible to construct passive THz components such as directional coupler, band pass filter. For the future work, we are concentrating to increase the THz fiber link length to at least 10 m.

ACKNOWLEDGMENT

The authors wish to acknowledge the funding from Canadian Foundation for Innovation (CFI) (34633) and Canada Research Chair of Prof. Maksim Skorobogatyi to carry out this project.

REFERENCES