Introduction

Over recent years, tremendous efforts have been invested in designing novel nanoparticle (NP) probes with unique properties that are advantageous for use in biochemical diagnostics and disease treatment.¹,² The NP probes most widely used in diagnostic applications are quantum dots (QDs), polymer dots (PDs), upconversion nanoparticles (UCNPs), and plasmonic nanoparticles (NPs).³

The unique optical and physical properties of plasmonic NPs, their proven photo-stability, water solubility and biocompatibility provide new opportunities and open new fields of biomedical application ranging from using NPs as a targeted drug carrier or gene deliverer to cancerous cells, to using NPs as a biological immunomarker agent in biomedical diagnostics and disease treatment.⁴⁻⁷ An outstanding example is the use of spectrally tunable NPs as optical multiplexing biomarkers for selective cell and tissue labelling.⁸,⁹ This multiplexed method could notably show several advantages for cytology applications. Currently, in cytology specimen analysis, pathologists heavily rely on immunohistochemistry (IHC) to increase the accuracy of their diagnosis.¹⁰ Multiple preparation steps have to be performed to color these proteins, which can destroy the proteins and therefore strongly reduces the reliability of the technique. It is also impossible to assess the relative expression of multiple antibodies (Abs) at the single cell level, which is important for a reliable diagnosis. There is a need for a cost-effective, sensitive and specific diagnostic methodology to overcome the limitations associated with conventional IHC based methods. We think that a methodology based on a new cytology protocol, where immunolabeling by plasmonic NPs¹¹,¹² is performed on fresh cells before fixation, can improve diagnostic reliability.

To promote user adoption of this new method in cytopathology laboratories, the NP imaging hardware should be compatible with equipment currently used in laboratories, and the sample preparation and imaging procedure should not involve additional steps or risks of contamination to the sample compared with the existing procedure. This currently represents a challenge with plasmonic NP markers, as the optical detection of plasmonic NPs typically relies on the scattered light by NPs detected in a darkfield microscopy (DFM) mode. Although there are on the market hyperspectral microscopes with a darkfield condenser to detect and differentiate NPs with a very high resolution (e.g.: CytoViva, Photon, etc.), they are costly, require considerable changes to the conventional microscopy system, and are therefore impractical in clinical settings. Recently, we proposed a widefield hyperspectral 3D imaging of cell–NPs¹³ with reflected light microscopy (RLM)¹⁴ which overcomes the numerical aperture (NA) limitations of darkfield imaging and provides enhanced contrast for NP imaging in cellular environments. However, the RLM
requires high NA immersion objectives with matching oil that containe histopathology and cytology microscopy samples and limit widespread application.

In this article, we propose to use a multispectral side-illumination darkfield microscopy (SIM) method that allows designing and fabricating a compact microscopy module for optical imaging and spectroscopic identification of individual plasmonic NPs in fixed or live cell preparations. This method employs darkfield NP imaging with lateral optical illumination that removes the inherent limitations on the NA of the imaging objective used for the conventional darkfield microscopy and provides an enhanced contrast of plasmonic NPs in the diffusing medium, cellular membrane and extracellular matrix. By using recent light emitting diode (LED) technology for side-illumination, the dimension of the proposed microscopy module can be comparable with the conventional histopathology sample holder. This compact side-illumination module can provide a convenient and routine method for immunoplasmic marker visualization by cytopathologists. It can be easily adaptable to the microscopes currently used in the clinical setting thus facilitating and accelerating its adoption.

Experimental

Cell culture

To image the NP mixture in a cellular environment, we cultured adherent MDA-MB-231 human breast cancer cells and suspension Y79 human retinoblastoma cells.

MDA-MB-231 cells (ATCC® HTB-26™) were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS, Life Technologies) and 1% penicillin and streptomycin (PS, Invitrogen) and cells were removed by trypsinization and seeded onto a microscopic slide with the help of a self-insertion well from Ibidi. When the cells reached ~80% confluence, they were incubated with a NP mixture for ~3 hours in an incubator and then washed 3 times with phosphate-buffered saline (PBS, Sigma-Aldrich), fixed with cold methanol for 5 minutes and washed another 3 times with PBS. Then the self-insertion well was replaced by the coverslip (SPI Supplies) on top of the slide.

Y79 cells (ATCC® HTB-18™) were cultured in RPMI 1640 (Life Technologies) containing 10% FBS (Life Technologies) supplemented with 1% PS. The NP mixture was incubated with Y79 cells for 3 hours before centrifugation at 200g for 7 minutes. The NP mixture incubated Y79 cells were then sprayed on a slide coated with poly-L-lysine and covered by a coverslip.

Plasmonic nanoparticles

For both individual or multiplexed NP detection applications shown in this article, we used 70 nm silver (Ag) spherical NPs (Ted Pella Inc.), 50 nm, 60 nm and 80 nm gold (Au) spherical NPs (Nanopartz), and 40 × 80 nm gold nanorods (AuNR) (Nanopartz).

The NPs were placed in different environments to prepare the samples: in homogeneous low-scattering PBS medium and in a high-scattering cellular environment filled with the Vectashield Antifade Mounting Medium. We used conventional 25 × 75 microscopy slides as a substrate with thin 0.13–0.17 μm coverslips.

Side-illumination microscopy adaptor

The main principle of the side-illumination darkfield method is shown in Fig. 1A and the schematic of the light beam propagation is presented in Fig. 1 of the ESI† Fig. 1B shows a technical schematic of the microscopy module with lateral LED illumination. Two types of microscopy adaptors optimized for inverted (Fig. 1C) and upright microscopes (Fig. 1D) were designed by us and fabricated by VegaPhoton. The adaptors were fabricated with aluminum CNC machining to obtain the precision and rigidity required for use with professional microscopes. To simplify integration, in the case of the inverted microscope, the adaptor was integrated into a ProScan™ flat top inverted microscope motorized stage (Prior Scientific, Inc.) that allows fine 3D spatial sample translation. For the conventional upright microscope, the adaptor thickness was designed to be only 5.4 mm for seamless integration with the existing transmission illumination setup and to avoid hinder to the objective free run. The narrow RGB LED array (2.8 × 0.35 × 0.85, Citizen CL246) is mounted on a PCB card compatible with both inverted and upright microscopes and placed in close optical contact with both sides of the standard microscope slides used in histo- and cyto-pathological analysis, as shown in Fig. 1B. Typical emission spectra of the RGB LED are shown in Fig. 2A.

The manual or automatic power control of illumination intensity for individual color LEDs provides a possibility for

![Fig. 1](image-url) (A) Principle of the side-illumination darkfield technique. (B) Schematics and (C) experimental prototypes of the darkfield microscopy with side LED illumination designed for inverted and (D) upright microscopes.
Results and discussion

Side-illumination darkfield multispectral plasmonic NP microscopy

The proposed SIM method and corresponding microscopy module are based on four complementary technologies, in order to provide a high resolution and high contrast NP imaging in the complex medium and facilitate integration into existing optical systems.

The first technology is a darkfield microscopy technique based on lateral illumination: this method resides in excluding the non-scattered light from the output image by using an illumination orthogonal to the imaging lens optical axis. This approach is optimal for darkfield NP imaging and what is also important is that it removes the inherent limitation on the NA of the objective which has to be smaller than the NA of the illumination condenser in the conventional transmission darkfield mode. The second technology is an application of the recent development in discrete color LEDs specifically designed and optimized for lateral illumination of direct visualization of multiple plasmonic biomarkers placed in the medium or on the cellular membrane. Automatic LED intensity control is very useful for the development of the digital NP imaging and detection using a fast CMOS color or monochromatic camera and sophisticated image treatment software. Another advantage of the proposed microscopy adaptor is in the simplicity of switching between the conventional transmission mode already used by pathologist and the darkfield side-illumination mode and, especially, the possibility to use them together, thus generating more relevant information about investigated samples.

Multispectral plasmonic NP imaging in a homogeneous medium

The SIM method using our portable adaptor for an inverted microscope (Fig. 1C) was initially used to test the efficiency of the approach in the comparative study with conventional trans-illumination DFM (Nikon). Plasmonic NPs were placed on the microscopy slide in the PBS buffer and covered by the thin coverslip through the 200 μm spacer. Objective 60×, 0.7NA was used for the imaging and a Nikon darkfield condenser (NA 0.8–0.95) was used for the conventional darkfield setup. All RGB LEDs were illuminated for the side-illumination adaptor. In Fig. 3 we present results for the detection of Au NPs with different sizes. In the same images we also show a local scattering intensity distribution that allows us to compare the experimental signal to-noise ratio and NP contrast and what is also important is that it removes the inherent limitation on the NA of the objective which has to be smaller than the NA of the illumination condenser in the conventional transmission darkfield mode. Furthermore, the possibility to tune the NP plasmon peak to the maximum intensity of the illuminating LED source allows improving the efficiency of NP chromat differentiation. The fourth technology relies on the introduction on the market of low-cost, fast and sensitive CMOS cameras. Such cameras in combination with corresponding image treatment software serve as the basis for the automatic multiplex NP detection, spatial localization and spectral differentiation.

As follows from the above description, the most efficient NP detection system will use matching and as narrow as possible spectral characteristics of LED sources, imaging camera filters and plasmonic NP scattering spectra. However, while it is possible to build such a system with the available technology, the cost-efficiency aspect introduces certain limitation on the optical design. In this work we are using freely available on the market RGB lateral illumination LEDs in combination with a compact low cost color CMOS camera (Ximea). Integrated into the camera Bayer filters provides a relatively large spectral range still giving the opportunity for the multiplexing.

Resonance properties of the plasmonic NPs can be readily tuned to the optimal peak position by changing the material, composition, size and geometry. However, a reliable NP detection by the darkfield method imposes a limitation on the scattering efficiency that directly depends on the NP size. This is why in this work we are using sufficiently large NPs for the multiplexing: 70 nm Ag, 80 nm Au, and 40 × 80 nm AuNR. In Fig. 2, we show theoretical scattering spectra for our choice of NPs placed in the two most used media for the visualization: PBS buffer with a refractive index (RI) of 1.34 and mounting medium with RI = 1.45. As we can conclude from the figure, the spectral position of the 80 nm Au NPs in particular is far from the optimal, but taking into account NP scattering efficiency and CMOS camera sensitivity these NPs can be spectrally differentiated as we show below.
Plasmonic NP imaging in the cell–NP complex

And finally, we are presenting the most important results of multiplexed NP visualization. Different cell lines with different sizes and properties were nonspecifically decorated with plasmonic NPs and observed by the proposed SIM mode and DFM mode for comparison.

Firstly, we prepared a cytology sample with MDA-MB-231 that is a highly aggressive, invasive and poorly differentiated triple-negative breast cancer cell line. Triple-negative breast cancer is an aggressive form of breast cancer with limited treatment options. Understanding the molecular basis of this cancer is therefore crucial for effective new drug development and as a result many studies on potentially active agents for this particular type of breast cancer have been conducted using the MDA-MB-231 cell line (PHE Culture Collections).19,20 MDA-MB-231 cells are rather large (up to 30 μm) adherent cells. They were mixed with our three types of NPs and placed in the Vectashield antifade mounting medium.

Retinoblastoma is a rare childhood cancer of the eye that can begin in utero and is diagnosed during the first few years of life. To date, two human retinoblastoma cell lines, WerI1 and Y79, are widely used in research. The Y79 cell-line is suspension cells with small dimensions (10–12 μm diameter) and two markers on the membrane can be selectively labelled by plasmonic probes: MRC2 and CD209.21 We have prepared a second type of cytology sample with a Y79 cell–NP complex placed in the mounting medium.

As was shown in the literature,22,23 the influence of the cellular environment on the quality of the conventional dark-field optical detection of the forward scattering light makes image interpretation and NP visualization in the cellular environment quite complicated or even impossible (Fig. 2 in the ESI†). However, our experimental results obtained with a SIM setup showed drastic improvement for the NP visualization in the cellular environment compared to the conventional darkfield mode. In Fig. 5, we present the images of MDA-MB-231 and Y79 cells decorated with different NPs where high NP contrast allows reliable spatial and spectral detection even by direct visual observation. This is not the case for the DFM where high cellular scattering blocks NPs. This phenomenon is more obvious for smaller Y79 cells making NP differentiation and even detection impossible.

NP spatial distribution and spectral differentiation in a cellular environment are main parameters for using NPs as multiplexed biomarkers to target specific cells in biomedical appli-
Cations and our results show good potential for the SIM method to provide reliable information.

The side-illumination adaptor imposes no limitation on the objective NA, so we can increase the NA up to 0.95. Results of the SIM image of the cells–NP complex taken with objective 60×, 0.95NA with the corresponding local 3D NP intensity patterns confirm high contrast of NPs placed on the cell membrane (Fig. 6).

Such advantages of the SIM method are very useful for the application of localizing the NP position in the 3D space. Enhanced spatial resolution especially in the z-direction is provided by the objective with a high NA and the experimental result of dynamic 3D NP scanning is attached in the ESI Video.†

Our microscopy approach has significantly lower NP multiplexing capabilities than continuous scanning hyperspectral systems. However, considering a much lower cost, simplicity of integration and utilization in the fields where three plasmonic markers can provide adequate information, SIM has very good industrial potential. Also, a continuous advancement of the microelectronic technology will provide new more efficient and spectrally variable LED light sources and imaging detectors with tunable filters that will contribute to the performance of SIM technology.

This compact side-illumination module presented in this work can provide a convenient and routine method for immunoplasmonic marker visualization by the pathologist.

However, to achieve this goal, it is necessary to develop the corresponding hardware architectures and software algorithms, which will automatically detect positions, types and concentration of the immunoplasmonic markers using a multispectral data cube. As the result the SIM method could serve as the basis for the whole slide imaging (WSI) automatic system.²⁴ Such a system will enable pathologists to read slides digitally, helps to visualize/identify new immunoplasmonic biomarker signatures and to develop early diagnosis and effective therapeutic intervention tools. The inherent stability of immunoplasmonic biomarkers (noble metal NPs preserve their plasmonic properties for a long time) can be considered as an advantage as the time between labelling and digitization became not critical.

Conclusion

Side-illumination plasmonic nanoparticle microscopy (SIM) has several advantages such as high optical contrast for individual NP imaging, precise 3D NP localization due to the high NA objectives, possibility of the visual and software-based NP chromatic differentiation, and simple integration on any upright or inverted microscope preserving original functionalities. Pathologists and cytologists would benefit from this cost-effective, portable and functional side illumination setup for their request of real-time diagnosis and test. Combined with the technique of specific antibody functionalized NPs selectively targeting diseased cells, our SIM system can provide a cost-effective, compact clinically relevant approach for quick diagnosis and high efficiency therapeutic treatment.

Conflicts of interest

There are no conflicts to declare.
Acknowledgements

The authors thank Dr Pierre Hardy for providing Y79 human retinoblastoma cells for the tests and Yves Drolet for technical support.

References

10 V. Kumar, A. K. Abbas and J. C. Aster, Robbins & Cotran Pathologic Basis of Disease, Elsevier Health Sciences, 2015.