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Photonics has become an indispensable tool in scientific 
discovery, enabling key advances in communications1, 
sensing2,3, photovoltaics4, computing5,6, quantum 
engineering7,8 and many other fields. Central to the 
broad applicability of optical methods is a small, but 
powerful, set of design schemes for confining and 
transferring energy in time and space — notions such 
as index guiding, wave interference, polaritonics and 
effective- medium engineering — that provide physical 
intuition for extracting concrete functionality from the 
abstract mathematical richness of Maxwell’s equations. 
Each of these schemes offers a mixture of distinctive 
capabilities and limitations, and determining the best 
approach (or combination thereof) for any particular 
application remains a challenge for photonic design9.

As a concrete example, consider the problem of
enhancing light–matter interactions via the photonic 
local density of states (LDOS) — the Purcell effect — 
reducing to the familiar Purcell factor F = ( )

λ

n

Q

VP

6

π 2

3
2 , 

with λ denoting wavelength and n refractive index, in the 
case where a single resonance dominates10. Integrated 
micro- resonators11 based on index guiding can achieve 
extremely long lifetimes (high quality factors Q) at the 
expense of reduced spatial localization (large mode vol-
umes V). Electronic plasmon- and phonon- polariton 
resonances allow for tight subwavelength confinement 
(small V) but suffer from high material absorption 
(small Q)12. Photonic crystals10 and bandgap engineer-
ing provide a flexible low- loss platform for manipulating 
light at the wavelength scale but are limited in practice 
by the achievable bandwidths and a lack of forms exhib-
iting omnidirectional bandgaps. Metamaterials offer 
conceptual simplicity in engineering exotic dispersions 

and large LDOS13, but are constrained by fabrication 
limitations, the breakdown of effective- medium approx-
imations at large wavenumbers, and challenges related 
to light coupling14,15.

Growing out of these general design principles, con-
tinued increases in computational power have enabled 
the development of inverse methods that, given a set 
of desired electromagnetic objectives and constraints, 
exploit global16, gradient- based17–19 and data- driven opti-
mization algorithms20,21 to search through potentially 
millions of structural degrees of freedom in pursuit of 
ideal response characteristics. This capacity has greatly 
expanded the accessible design space and has led to vast 
improvements in device performance (F. 1). However, 
for typical problems, the range of design possibilities 
and complicated interplay between standard objec-
tives and constraints also makes it practically impos-
sible to determine truly optimal structures, and one 
can at most hope for a well- performing local optimum. 
(Notwithstanding this, inverse methods may converge to 
structures that appear to reflect intuitive design princi-
ples, such as bowtie antenna and slot waveguide motifs 
for enhancing light–matter interaction18,22,23). Although 
the current arsenal of design techniques and algorithms 
provides enormous capability to tackle a wide range of 
engineering applications, it cannot rigorously answer a 
natural question of increasing relevance: what are the 
fundamental limits to optical control, and how close are 
existing devices to reaching them?

The notion of such fundamental limits, encoded 
in bedrock principles such as the finite speed of light 
and the second law of thermodynamics, is ubiquitous 
in physics. Beyond added theoretical understanding, 
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limits have and continue to play an important role 
as signposts for further technological improvement. 
Attempts to overcome the Abbe diffraction limit con-
tributed greatly to the development of the field of 
super-resolution microscopy, with diverse techniques 
exploiting evanescent fields24–26, nonlinear effects25,27 
and active temporal control28. Knowledge of the physi-
cal origins of the factors forming the Shockley–Queisser 
limit29 for solar cell efficiency pointed the way to devel-
opments in concentrators30, tandem31 and intermediate 
band photovoltaics32. The breakdown of familiar black-
body limits to nanoscale separations sparked interest in 
super- Planckian thermal devices33,34.

In this Review, we first present a historical overview 
of the development of electromagnetic limits with rep-
resentative examples that showcase the broad range of 
problems for which limits are applicable. The derivations 
of these limits illustrate a general thematic evolution 
mirroring the history of optics itself: from simplifying 
and restrictive assumptions (homogeneity, quasistat-
ics, ray optics and so on) pertinent to low- dimensional, 
deeply subwavelength and large- etalon systems, toward 
increasingly sophisticated wave arguments applicable to 
any length scale (F. 2).

These examples also provide context and motiva-
tion for the main focus of this Review: an emerging 
general methodology for evaluating photonic design 
bounds based on mathematical optimization theory 
and physical conservation principles. Originally devel-
oped as an instrument for investigating maximal scat-
tering cross- sections35–37, the framework is applicable to 
a broad range of design problems where the objective 
can be expressed as a quadratic function of the fields38–40. 
The constraints follow directly from Maxwell’s equations 
and the identities of scattering theory, limiting both the 
amplitude of the polarization response — important  
to power transfer — and the extent to which the phase 
of the polarization response can be modified — with 
consequences for the engineering of resonances.  
To better handle problems involving near- field effects 
and rapidly varying length scales, spatially localized con-
straints can be introduced, with a denser distribution of  

local constraints giving tighter bounds at the expense 
of higher computational complexity38,39. In this sense, 
the framework emphasizes the complementary role of 
limits and structural optimization: structural optimiza-
tion enforces Maxwell’s equations exactly (up to com-
putational discretization) and produces specific devices 
corresponding to local optima; limit calculations instead 
produces bounds that apply to all possible structures via 
conservation- law based constraints over spatial regions 
that can be viewed as a relaxation of Maxwell’s equations.

Through instructive examples concerning thermal 
emission, scattering/absorption cross- sections, LDOS 
enhancement and power splitting, we describe in detail 
the physical implications behind various components 
of the framework and showcase its broad applicability. 
Well- known results such as the Chu limit for electri-
cally small antennae and the geometric optics limit for 
cross- sections of large scatterers are shown to spring 
naturally from the framework. For readers interested in 
the mathematical details of the underlying optimization 
theory, we also recommend eF.41.

Finally, we discuss the remaining challenges and 
opportunities, including the need for numerical 
methods that can handle larger systems, generalizations 
to other physical settings beyond photonics, and poten-
tial improvements to structural optimizations that may 
arise from knowledge of optimal fields.

Historical overview

In this section, we highlight representative prior results 
on electromagnetic limits relevant to a wide range of 
topics in photonics.

Speed of light limits. Since the first measurement of the 
speed of light in vacuum by Ole Rømer, and the sub-
sequent postulates of special relativity demanding that 
information cannot travel faster than c, rigorous proofs 
of subluminal energy velocity ve ≤ c have been deduced 
from increasingly general assumptions: moving from 
homogeneous non- absorbing media, through the inclu-
sion of dispersion, anisotropy and non- locality42–45, to 
the simple unifying requirement of passivity: materials 
that do no net work on electromagnetic fields45–47.

Slow light. In complement, there has also been great 
interest in establishing limits on achieving minimal 
energy velocity or ‘slow light’, using engineered devices 
such as optical delay lines and buffers48–52. Under the 
approximation of zero bandwidth, the delay experienced 
by a light pulse can essentially be made indefinitely long, 
for example, near the band edge of a photonic crystal 
where the group velocity vanishes53. For finite band-
widths, however, the product of the delay time and 
operating bandwidth sets a fundamental lower bound 
(similar to the energy–time uncertainty principle in 
quantum mechanics). For a slow light waveguide with an 
idealized linear dispersion relation across the bandwidth 
of interest, the delay–bandwidth product limit takes 
the form T f n nΔ Δ ≤ ( − )

L

λ avg min
c

, where ΔT is the delay 
time, Δf is the operating bandwidth, L is the length of the 
device, λc is the free- space bandwidth at the band cen-
tre, and navg, nmin are the average and minimum effective 

Key points

• imits provide a rigorous theoretical basis to quantify the trade- offs and scaling laws 

associated with almost any common design parameter (device footprint, material 

choices, fixed separations and so on).

• imits may guide practical design efforts and complement computational inverse 

design methods by confirming the achievement of near- optimality or clarifying 

possibilities for further improvement.

• Inverse design methods, such as topology optimization, involve a large number of 

degrees of freedom subject to non- convex constraints (axwell’s wave equations); 

although gradient- based methods can efficiently find local optima, it is generally 

infeasible to determine the global optimum.

•any limits are derived by simplifying the design problem in some fashion: for 

example, by working with geometric optics, maximizing per- mode contributions 

ignoring inter- mode constraints, only enforcing a subset of the relevant physics and 

so on.

•athematical optimization theory formalizes the notion of simplified (‘relaxed’) 

physics and offers tools for bounding the design performance in such settings. In turn, 

these values bound realistic design performance.
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photonic crystal waveguides and holey fibres10. Except 
for the simplest cases, determining the propagation 
characteristics of a specific design requires numerical 
computation. This makes sufficient conditions for the 
existence of guided modes (analogous to variational 
conditions for existence of bound states in quantum 
mechanics) conceptually and practically useful. For 
instance, the displacement field Dc of the fundamen-
tal mode of a waveguide with permittivity profile ε 
and cladding profile εc was shown to necessarily sat-
isfy ε εD D( − ) < 0*

c
−1

c
−1

c∫ ⋅  within the cladding60. On a  
similar note, the degree of localization achievable by  
a photonic crystal defect mode is intuitively proportional 
to the bandgap size10, leading to variational bounds on 
the minimum index contrast required to engineer 2D 
bandgaps61. Generalizations to incorporate conditions 
for dual- polarization and 3D localization, along with 
considerations of quasicrystalline62 and disordered 
media63 remain open problems.

Optical density of states. Light confinement is also an 
integral tool for enhancing light–matter interactions in 
optical modulators, lasers and quantum devices. As 
detailed in the Introduction, a resonant mode enhances 
the power radiated by a nearby dipolar emitter in 
accordance with the Purcell factor, which grows pro-
portionally with the quality factor Q (longer lifetimes) 
and inversely with mode volume V (higher field inten-
sities). Beyond modal descriptions that do not readily 
generalize to multiresonant systems64 or that refer to 
specific geometric designs, the electromagnetic LDOS 
stands as a fundamental figure of merit quantifying 
optical response in arbitrary settings. By enforcing 
passivity for the scattered power65, quadratic optimi-
zation arguments have made it possible to constrain 
the magnitude of achievable polarization response 
independent of geometric or modal considerations. 
For a dipole emitter a small distance d away from a 
device enclosed within a half space, such conservation 
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Fig. 2 | Overview of representative electromagnetic limits. The figure illustrates a collection of representative photonic 

bounds, arranged from a to f in roughly chronological order. a | Equivalent circuit of an omnidirectional antenna. For elec-

trically small antennas, taking the quasistatic limit yields the celebrated Chu limit. b | Yablonovitch limits to light trapping 

at a rough interface, combining geometric (ray) optics with a statistical description of the scattering angle. c,d | Limits 

based on passivity: for a passive device both the absorbed and scattered power must be non- negative. Panel c shows the 

feasible region for cloaking as a function of absorption efficiency σabs/σscat and net absorption σabs (eF.181). Panel d illustrates 

upper bounds on scattering cross- sections dependent on the material susceptibility χ. e | Schematic showing a scattering 

matrix description of an optical device connecting input waves to output waves. Tools of linear algebra such as singular 

value decompositions can be used to analyse limits on communication and power transfer using lightwaves54,81,182.  

f | Suggested initial design for a multimode 2D Helmholtz resonator, based on the solution of the Lagrange dual problem 

of the design optimization minimizing the norm- squared error between the electrical field E within the device and some 

target field Etarget. g | A Lagrange dual framework for evaluating general photonic bounds using only knowledge of the 

design region Ω and material susceptibility χ, through constraints based on conservation laws derived from Maxwell’s 

equations. Overall, we see a trend from early results that are problem- or regime- specific towards more recent limits with 

broader applicability. In panel a, Qrad is the radiative Q- factor of the antenna, k0 the wavevector, R the radius of a sphere 

constraining the size of the antenna, and I
i
 and Z

i
 are effective currents and impedances of the equivalent circuit model 

used by Chu162. In panel b, dA is a small area element of the absorption surface under study, Iinc, Iint are the intensities for  

the incident and transmitted light respectively, θc denotes the maximum angle from which light can escape from the high 

index material. In panel c, 
nabs

( )σ , σ( )nscat
 are the cross- sections for the scattering harmonic order n. In panel d, χ(x, ω) is the 

material susceptibility distribution over device volume V as a function of position x and angular frequency ω. In panel e, 

ψ I and Oψ  are input and output waves connected by the scattering S matrix of an optical device. Panel a is adapted with 

permission from eF.162, AIP; panel b is adapted with permission from eF.87, Optica; panel c is adapted with permission 

from eF.181, APS; panel e is adapted with permission from eF.81, PNAS; panel f adapted with permission from eF.160, ACS; 

panel g is adapted with permission from eF.177, Optica.
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arguments yield a material bound on the dominant  
contribution of evanescent fields to LDOS enhancement 
at a single wavelength, ≤ ( )

ρ ω

ρ ω

λ

d

χ ω

χ ω

( )

( )

1

8π

3 ( )

Im ( )
0

3

2

, where ρ0(ω)  
is the free- space LDOS, ρ(ω) is the total LDOS and  
χ(ω) is the material susceptibility, all as a function of the 
angular frequency ω. As discussed later, the positivity of 
scattered power alone cannot fully account for all rele-
vant wave effects and resonance conditions, and in fact 
is only one of several important constraints that limit 
optical response beyond quasistatic settings35. Passivity 
arguments based on the Kramers–Kronig conditions 
similarly place limits on the frequency- integrated mate-
rial response of a medium, yielding sum rules of the form

∫ ωd = 0
ρ ω ρ ω

ρ ω

x

0

∞ ( , ) − ( )

( )

0

0

 (eF66,67).

Light focusing. Another important aspect of localization 
relates to the focusing of optical power from a source 
to a receiver. When restricted to systems described by 
geometric optics, the conservation of etendue68 places a 
lower bound on how tight the light rays from a source 
can be focused down69. Accounting for wave effects, scat-
tering concentration bounds over input–output modal 
channels of the form c ρ≤maxeig( )uout,

2

in
⟨∥ ∥ ⟩̂  yield  

the maximum concentration of power achievable for  
any linear combination of output channels represented  
by the unit vector û in terms of the largest eigenvalue of  
ρin, the density matrix describing the power flow 
and coherence across input channels70. Achromatic 
metalenses71–76 that focus several incident beams onto the 
same focal spot are further restricted by causality and, thus,  
delay–bandwidth limitations77.

Optical communication. More broadly, limits on focus-
ing are connected to the general theme of using light as a 
conduit for information and energy transfer. An early con-
straint related to energy transfer is Kirchhoff ’s law, equating 
the emissivity and absorptivity of an object, often associ-
ated with the second law of thermo dynamics (detailed 
balance) and originally derived under assumptions of 
geometrical optics and reciprocity78–80. Generalizations  
of this concept via the formalism of a linear ‘mode-  
converter’ have been used as models of communication 
capacity, and are in principle capable of accounting for 
wave effects and non- reciprocal media81. In particular,  
information encoded in waves transferred between a 
source VS and receiver region VR in free space, can be quan-
tified via a Frobenius norm x x( , )

V V
0

2

S R

∫ ∫ ∥ ∥′G  of the vac-
uum Green’s function 0G  connecting them. Adaptations 
to describe communication mediated by devices (such 
as lenses and multi plexers), which can strongly modify 
electro magnetic fields and thus ‘channel capacity’, remain 
an active area of investigation40,82.

Radiative heat transfer. A related perspective on com-
munication can be gleaned by considering heat as a  
stochastic source of energy transfer. The blackbody 
limit as applied to radiative heat transfer constrains 
the flux emitted by a macroscopic body of area A and 
temperature T to be H ≤ σT4A, where σ is the Stefan–
Boltzmann constant79. However, this result is only 
applicable to objects where all characteristic lengths 
are substantially larger than the thermal wavelength 

λ =
c

k TT

2π

B

ħ . It does not explain the power exchanged 
between two bodies held at different temperatures sep-
arated by a subwavelength vacuum gap d; nor does it 
account for the material constraints subsumed in the 
assumption of perfect absorption, such as the difficulty 
of engineering absorption over a wide bandwidth in 
a device of a limited size83–85. Just as with LDOS, the 
positivity of the scattered power sets material con-
straints on the achievable polarization response that 
waves originating in one body may excite in another65, 
yielding an upper bound on the mutual  absorp-
tion of light x x( , )

χ

χ
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χ V VIm Im 0
2S
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S

R
2

R S R
G∫ ∫ ′∝ ∥ ∥
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 (general-

izing the aforementioned communication bounds  
to incorporate material considerations in the source/ 
receivers) and a corresponding upper bound on the  
spectrally integrated heat transfer of H σT A≤

kd

χ

χ

4 2

7( ) Im2

3

.  
Going further, accounting for radiative losses due  
to mutual scattering between bodies reveals the much tighter  
bound of H σT A≤ ln[ ]

kd

χ

χ

χ

χ

4 8

7( )

Im

4(Im )2

4

2
. The origin of this  

reduced material scaling lies in the infeasibility of  
achieving resonant optical response for all waves86.

Light trapping. The difficulty in engineering a blackbody 
response is directly related to limits on the absorption of 
incident radiation, also known as light trapping in the 
context of photovoltaic applications. The Yablonovitch 
limit87, originally derived via a statistical description 
of rays scattering off rough surfaces, posits a maxi-
mum absorption enhancement factor F ≤ 4n2, com-
pared with the expected single- pass absorption αw of a 
weakly absorbing bulk film of thickness w and absorp-
tion coefficient α. The dependence on the refractive 
index n enters via the total internal reflection angle 

θ n= arcsin(1/ )c , which sets the emission cone from 
which light can escape. Analyses of maximum absorp-
tivities for films of thickness w ≲ λ have been carried out 
through modal decomposition techniques88, allowing 
the associated limit to be expressed as a ∑ σ

ω m m

1

Δ ,max
,  

with the maximum spectral absorption cross- section for  
each mode σm,max determined by specific material and 
geometric considerations. In the simplifying regime 
of a thin film supporting a single guided band for 
each polarization, this approach gives a limit absorp-
tion enhancement of F n≤ ( )4

λ

w

α

α n w

1

2 g
2w

w

g

g
, where nwg  

is the group index of the mode(s) and 
α

α

wg  characterizes  
the spatial overlap between the mode profile and absorp-
tion layer. As examined in later sections, aside from their 
practical utility in predicting performance for specific 
geometries, such modal summations can be used to 
gain a qualitative understanding of achievable absorp-
tion characteristics. In contrast, limits based on maximal 
material response of the form ≤

σ

V

χ

χIm

abs
2

 (eF.65) remedy 
the need of geometric specificity (beyond a linear vol-
umetric V dependence), but can be shown to be loose 
beyond quasistatic settings, or in cases where it is not 
possible to achieve resonant response.

Optical forces. Besides transferring energy, light can 
also impart force89,90: the elastic scattering of imping-
ing photons on a body of much larger size than λ 
transfers a momentum of Δp = 2h/λ. For bodies with 
wavelength- scale features, the impact of wave effects and 
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nanostructuring on the scattering cross- section becomes 
pronounced. For quantum and thermal waves originat-
ing within bodies — often associated with van der Waals 
and Casimir forces — the situation is even more compli-
cated, owing to the broadband and incoherent nature of 
thermodynamic fluctuations. Despite these challenges, 
a no- go theorem establishing the impossibility of repul-
sive interactions between mirror- symmetric bodies 
separated through vacuum91 exists, as do bounds on 
Casimir–Polder forces on nanoparticles92.

Cross- sections. Finally, as can be seen from the preceding 
subsections, the concept of a scattering cross- section is 
central to a great range of electromagnetic problems, and 
consequently it will occupy much of our ensuing discus-
sion. For bodies of dimensions a much greater than λ, 
the scattering cross- section σscat ∝ a2 is known to scale 
like the geometric area. For electrically small dielectric 
particles with a ≪ λ, the well- known Rayleigh scattering 
result is σscat ∝ a6. Resonant metallic particles in the qua-
sistatic regime provide larger relative optical response 
∝V, captured in the aforementioned maximal material 
response bounds. As discussed in later sections, more 
recently developed limit techniques make it now possible 
to interpolate between these asymptotic regimes.

General scattering bounds. A common feature across the 
panoply of electromagnetic limits mentioned so far is  
the search for simplifying assumptions that ‘relax’ phys-
ical constraints and thereby make the analysis feasible: 
working in the geometric optics regime; maximizing 
modal contributions without regards for geometric con-
straints; maximizing material response by application of
optical theorems based on passivity. Over the past few 
years, numerous works have formalized the notion of 
physical relaxations through the mathematical language 
of optimization theory35–37,65, and it is this perspective 
that will dominate the subsequent discussion.

Before moving to this topic, it is important to rec-
ognize that there are other closely related lines of 
investigation. With regards to antenna design, con-
siderable progress has been made in deriving flexi-
ble limits to various aspects of antenna performance 
by formulating the limits as the solutions of convex 
optimizations over possible current distributions of 
particular antenna geometries93–96. For problems in 
which an ideal target field distribution E x( )̂  is known, 
the design may be specified as minimizing the norm- 
squared deviation E E−

2̂  subject to the constraint of  
Maxwell’s equations ωμE J= i

0
M , with the Maxwell oper-

ator ε ε kx= × ×− ( )0 0
2

∇ ∇M  (eF.10) and J being fixed 
sources of the problem (note that SI units are used through-
out the text with ε0, μ0 being the permittivity and perme-
ability of vacuum respectively, ω is the angular frequency 
and k0 is the vacuum wavenumber). Both the field distribu-
tion E(x) and material distribution ε(x) are then treated as 
optimization degrees of freedom, resulting in a non- convex 
optimization problem where finding the minimum possi-
ble deviation is computationally difficult41. Nevertheless, 
the minimum deviation can be bounded by the global 
optimum of the convex Lagrangian dual relaxation97, giv-
ing a limit on how closely Ê can be realized in practice; 

an analogous procedure was used to obtain bounds on 
minimum achievable mode volumes of dielectric resona-
tors, given constraints on device size and material98. More 
broadly, the method can be extended to any separable 
functions of the field at different positions f(E) = ∑x fx(E(x)), 
which can be of great relevance to design problems con-
cerning the actualizing of specific field transformations,  
for example those in optical analogue computing99. For 
other types of objectives, especially if there is no rigorous 
way to assert that some particular field solution is optimal, 
it may be difficult to evaluate the form of the dual function 
and thereby obtain limits41.

Technical description

Continuing the perspective outlined at the beginning 
of the previous subsection, we now present a tutorial 
overview of one of the general (unifying) approaches by 
which limits on attainable electromagnetic properties 
may be determined via optimization theory.

Scattering preliminaries. The perspective offered by 
scattering theory is helpful for formulating a widely 
applicable framework for obtaining limits on attainable 
response. First, by working from the basic definitions of 
scattering theory, the relationship between a given spatial 
permittivity and permeability profile (defined by a par-
ticular choice of material and geometry) and the polar-
ization current generated in response to some incident 
electromagnetic field becomes explicit. Second, as scat-
tering descriptions innately lead to integral equations, 
the constraints of any scattering theory are naturally 
organized into a hierarchy that meshes well with both 
physical intuition and formalization. These two aspects, 
taken together, help establish the crucial link between the 
features that may be imparted to waves through mate-
rial structuring and the standard forms and techniques 
of optimization theory explored below. Throughout 
the following text, capital letters in blackboard font  
(such as V ωx( , )) are used for linear operators, and the 
constitutive relations V ⋅ω ε ω ωD x x E x( , ) = ( , ) ( , )0  and 

ω μ ωB x H x( , ) = ( , )
0

 are assumed for simplicity. However, 
much of the subsequent development can be carried out 
in greater generality, for example in magnetic media, 
non- reciprocal media and so on39. It is also assumed that 
the boundary conditions on the domain under study, 
generally denoted as Ω, are specified so as to enforce 
outgoing scattered fields100,101. In reference to scatter-
ing quantities, i superscripts are used for ‘incident’ or 
‘initial’ fields and s superscripts for ‘scattered’ fields102. 
‘Total’ fields are superscript free.

At the finest level of detail that the design of a photonic 
device may be described (‘true physics’), Maxwell’s wave 
equation associates each inhomogeneous permittivity  
profile V ωx( , ) with a unique differential equation,

ω k ω ω

ωμ ω

E x x E x

J x

× × ( , )− ( , ) ( , )

= i ( , ),
(1)

0
2

0

i

V∇ ∇ ⋅

where k0 = ω/c = 2π/λ, λ is the free- space wavelength, and 
ωJ x( , )i  is the ‘free’ source polarization current density. 

Unless ωx( , )V  exhibits special symmetries, equations 
such as equation (1) do not typically have closed- form 
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solutions, meaning that it is usually not possible to fully 
analyse how changes to the potential V alter the total 
field E beyond local (‘Taylor- like’) expansions103. Yet this 
does not mean that the influence of V on E is completely 
opaque. Suppose that ωJ x 0( , ) =i , and that the bound-
ary conditions on Ω are set to describe an incoming 
(incident) electromagnetic field with electric compo-
nent ωE x( , )i . Introducing I ωx( , )

Ω

 as the dyadic identity 
operator, I A A=

Ω
⋅ , equation (1) may be rewritten as

∇ ∇ ⋅

⋅ .

I

V I

ω k ω ω

k ω ω ω

E x x E x

x x E x

× × ( , )− ( , ) ( , )

= ( ( , )− ( , )) ( , )
(2)

0
2

0
2

Ω

Ω

By defining M Iω k ωx x( , ) = × ×− ( , )0 0
2

Ω
∇ ∇ , setting  

ω ω ωx x x( , ) = ( , )− ( , )R V I ,  d e c o m p o s i n g  ωE x( , ) 
a s  ω ω ωE x E x E x( , ) = ( , ) + ( , )i s ,  and  not ing  t hat 

M ω ωx E x( , ) ( , ) = 00
i

⋅  — since the incident field is 
presumed to satisfy Maxwell’s wave equation in free 
space — equation  (2) becomes ω ωx E x( , ) ( , ) =0

s
M ⋅  

k ω ωx E x( , ) ( , )0
2

⋅R . Hence, the scheme of equation (2)  
for ωE x( , )s  is no different from that of equation (1) 
as applied to vacuum and the polarization ‘source’ 

R ⋅k Z ω ωx E x(−i / ) ( , ) ( , )0 , with Z the impedance of free 
space Z μ ε= /

0 0 . Accordingly, equation (2) implies an 
implicit integral relation on E mediated by the vacuum 
Green’s function (a volume integral formulation104,105) 
that, while offering a distinct conceptual perspective106 
and possible computational advantages107–109, is function-
ally equivalent to Maxwell’s equations. That is, regard-
less of what the shape specified by ωx( , )R  actually is, 
the Green’s function relation between the total field and 
‘source’ stated above shows that ωE x( , ) must obey the 
self- referential (alternatively referred to as a Lippmann–
Schwinger110 or Liouville–Neumann series relation102,111):

ω ω ω

ω

E x x x x x

E x

E

E

( , ) = d ( , , ) ( , )

( , )

= +

+,

(3)

s

Ω
0

Ω
0

i

Ω
0 0

i

G R

G R G R G R

∫

∫ ∬

⋅

⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅

′ ′ ′

′

where, taking r to be ′k x x( − )0 , r = ∣∣r∣∣, ̂⊗ ̂r r to be the 
vector outer product of r r r= /̂  with itself, and id  
the 3 × 3 vector identity matrix,

̂⊗ ̂

′ ω
k

r

r

r

r

r

x x id

r r

( − , ) =
4π

e
1+

i − 1

− 1+ 3
i − 1

,

(4)

r

0
0
3 i

2

2

































G

is the vacuum Green’s function for the left- hand 
side of equation (2) — G∇ ∇ ′k ωx x(1/ ) × × ( , , )−0

2
0   

δωx x x x( , , ) = ( − )0G ′ ′  with the additional factor of  

k0
2 included in equation (4) compared with the standard 

definition112 so that all length quantities that appear in 
the volume integral relation between the fields and the 
Green’s function may be defined relative to the wave-
length. Recalling that a scattered field may be defined
as the difference between incident and total fields, 

consistency demands that any scattered field must also
be defined as the field resulting from the total polariza-
tion current density (here ωJ x( , )) generated in response 
to the incident field (here ωE x( , )i ). As such, equation 
(3) shows that ⋅ω ω ωJ x x E x( , ) =− ( , ) ( , )

k

Z

i 0
R . Using this 

result, acting on equation (3) with ωx− ( , )
k

Z

i 0
R  from the 

left gives (the Fredholm integral form105,113)

∫ ′ ⋅ ′ ⋅ ′

⋅

R G

R

(5)

ω ω ω ω

k

Z
ω ω ω

J x x x x x J x

x E x J x

( , )− d ( , ) ( , , ) ( , )

=−
i

( , ) ( , ) = ( , ),

Ω
0

0 i i

where Ji is the ‘initial’ polarization current density setup 
in response to the initial electric field; see F. 3. (Note 
that it is also possible to derive results completely analo-
gous to eqns. (5)–(9) using scattered electromagnetic 
fields41, as opposed to the polarization current density 
perspective used here).

Equation (3) (equation (5), respectively) rests as 
the foundation of scattering theory and definition of the 
T- operator102,114 (or S- matrix115–117 (3), every incident 
electric field is related to a specific polarization current 
density (the polarization that it generates) by

(6)

δ

ω ω ω

ω ω

ω

Z

k
ω ω ω

E x E x E x

x x x x x x

E x

x x x x J x

( , ) = ( ( , )− ( , ))

= d ( ( − )− ( , , ) ( , ))

( , )

=
i

d ( ( , )− ( , , )) ( , ),

i s

R
0

0 R

−1
0

R R

∫

∫

′ ′ ′ ⋅ ′

⋅ ′

′ ′ ′ ⋅ ′

I I

G R

R G

where R is the subdomain of Ω where ωx 0( , )≠R   
(the ‘material’ extent of the scattering potential) and 
R ωx( , )−1  is the pseudo inverse of R (the inverse over 
the subdomain where R is non- zero). Because R and 
G describe causal, passive, linear system responses, the 
total linear operator relating J to Ei within R must be 

|E〉 = |Ei〉  + |ES〉

|Ei〉

Ω

k
0

|ES〉 = iZ G
0 

|J〉

Fig. 3 | Schematic of scattering theory. The basis of 

scattering theory broadly rests on the existence, for each 

particular object (scattering potential V), of an exact 

relation (the T- operator) between incident (initial or free) 

electromagnetic fields and total (generated or net) 

polarization currents. Once this relation is known, the  

total electromagnetic field EE  (the solution of Maxwell’s 

equations) is given by applying the Green’s function of the 

free (empty) domain G0 to the total current associated  

with the incident field JJ  to obtain the scattered field 

EE
s  and summing with the incident field EE

i .
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‘invertible’118,119. Accordingly, equation (3) delineates 
the existence of the inverse relation

∫ ⋅′ ′ ′Tω
k

Z
ω ωJ x x x x E x( , ) =−

i
d ( , , ) ( , ) (7)0

R

i

defining for each unique scattering potential V a unique 
linear response function T that relates any incident field Ei 
to the polarization current density J that self- consistently 
solves Maxwell’s equations through equation (3). The 
operator relation governing the T- operator, the Green’s 
function, and V resulting from equation (7),

I R G

T

∫
⋅

′ ′ ′

′ ″

ω ω

ω

x x x x

x x

= d ( ( , )− ( , , ))

( , , ),

(8)R

−1
0R

like equations (3) and (6), is fully equivalent to Maxwell’s 
equations and serves as an advantageous starting point 
for deriving conserved quantities.

From equation (6), relatively little must be done 
to reframe the determination of an optimal scatter-
ing object V in terms of the polarization current den-
sity. Integrating over ω ωx J x xd ( , ) ( , )*

P

P∫ ⋅ ⋅, where P 
is any known subdomain of Ω, and ωx( , )P  is a local  
‘polarization’ projection matrix — a linear response that 
does not mix distinct spatial points — equation (6) is 
transformed into

ω ω ω ω

ω ω

k

Z
ω ω

x J x x x J x

x x x J x

x J x x E x

d ( , ) ( , ) ( ( , ) ( , )

− d ( − , ) ( , ))

=−
i

d ( , ) ( , ) ( );

(9)

*

*

−1

0

0 i

P

Ω

P

∫

∫

∫

⋅ ⋅ ⋅

⋅

⋅ ⋅

′ ′ ′

P R

G

P

where, crucially, the dependence of the domains 
of integration on the spatial structure of R ωx( , )  
has been removed. More fully, because of the inclu-
sion of ωJ x( , )*  in the integrand, and the fact that 

ωJ x 0( , ) =  implies that R ωx 0( , ) = , it is completely 
equivalent to integrate x′ over either R (which requires 
knowledge of the geometry of ωx( , )V ) or Ω (which 
does not). By the same token, the content of equation 
(9) is also unchanged for any choice of response func-
tion −1

R  on Ω so long as R Rω ωx x( , ) = ( , )−1 −1  when 
x ∈ R. If V ωx( , ) may only take on a single 3 × 3 matrix 
value distinct from 0, as is usually true when designing 
a photonic device composed of a single material, then 
equation (9), with χ ω( ) denoting the electric susceptibil-
ity matrix of the material, may be further simplified by 
setting χω ωx( , ) = ( )−1 −1

R ; see equation (11) below. The 
only quantity in equation (9) that is not typically known 
from the outset of a design problem is ωJ x( , ). At the 
same time, because the physics of Maxwell’s equations 
is incorporated through G0, the true behaviour of the  
material scattering potential χ ω( )−1  is incorporated 
through ωx( , )−1

R , and the self- consistency of viewing 
ωJ x( , ) as the electric polarization current density result-

ing from ωE x( , )i  is incorporated by association with 
equation (3), any vector field that respects equation (9) 
for all possible choices of ωx( , )P  actually defines an 

effective medium scattering structure40 (a mix between 
the material properties of V ωx( , ) and the background).

Optimization bounds. The observation that every con-
straint of the form given by equation (9) applies to any 
structure of a given material within Ω implies that a great 
number of common photonic objectives can be stated 
as quadratically constrained quadratic programmes 
(QCQPs)41, and, in turn, bounded using standard relax-
ation techniques from optimization theory97. The con-
nection between equation (9) and QCQPs is most easily 
seen by switching to a more compact notation. Making 
use of the fact that integration may be viewed as an inner 
product for fields or functions120, equation (9) may be 
written in bra- ket form as

χT T T E( − ) = , (10)−1
0

i
P G P

with ∣ ⟩ ∣ ⟩ ∣ ⟩TT J E= =
Z

k

i i

0

, and A B x A x B x= d ( ) ( )*∫⟨ ⟩ ⋅   
denoting the standard complex- conjugate inner product, 
leading to the quadratic constraint equations

χ

χ

E T T T

E T T T

Im( )− [( − ) ] = 0,

Re( )− [( − ) ] = 0
(11)

i −1
0

A

i −1
0

S

P G P

P G P .

† †

† †

In these expressions, and the proceeding text,  
S superscripts will be used to mark the Hermitian (sym-
metric) part of the contained linear response function 

†
M M M= ( + )/2S , and A superscripts will be used to 
denote the antisymmetric part, †

M M M= ( − )/2iA , so 
that, like a complex number, M = MS + iMA. Given the 
freedom in choosing ,P  there is no difference between 
P and †

P .
When P is set to the domain identity 

Ω
I , the first rela-

tion of equation (11) is a statement of the conservation of 
‘resistive’ power within the domain37: the power drawn 
by the polarization current from the field, the inner 
product E TIm( )i , must equal the sum of the power 
lost by the polarization current to material absorption121,

V

V
(12)χ

ω

ω
T T x T x

x

x
T x( ) = d *( )

Im[ ( , )]

( , )
( )

−1 A

Ω
2∫ ⋅ ⋅†

and to outgoing radiation122

∬ ⋅

⋅ .

′ ′ ′G G ωT T x xT x x x

T x

= d d ( ) Im[ ( , , )]

( )

(13)
*

0
A

Ω
0

The second relation contained in equation (11), as 
illustrated further below, makes the related statement 
that ‘reactive’ power must also be conserved123,124 (see 
eF36,103,125). Correspondingly, for any P, the equalities of 
equation (11) are analogous to a complex generalization 
of Poynting’s theorem (restricted to P)125. These relations 
impose requirements on the characteristics of V and 
spatial extent of the domain Ω (through G0 which is 
limited to Ω) needed to achieve resonant response. That 
is, depending on the material the device will be made 
of and the spatial volume that it may possibly occupy, 
there may be strong limits on the degree to which the 
amplitude and phase of J relative to Ei may be tuned.
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Recollecting that the field and induced polariza-
tion currents are linearly related by E E J= +

Z

k

i i
0

0
G ,  

it follows that any physical process described by quad-
ratic field terms — including the fundamental time- 
averaged power- transfer quantities of absorption 

χk ZE E /20
A , extraction E JRe( )/2i  and scattering  

GZ kJ J /20
A

0, which rest as the basic figures of merit for  
the design of antennas96,126,127, light trapping devices87,128–132 
and optoelectronic coupling9,133–135 — can be considered 
as a quadratic objective. In this language, taking Tf ( )0  to  
denote some quadratic function of the polarization, and 
K a complete set of constraints — an independent set 

∈
{ }

k k KP  of local ‘polarization’ projections matrices span-
ning the n × n vector space of matrices for an n dimen-
sional real- number computational representation — the 
goal of maximizing (or minimizing) any such objective 
through material structuring may be formulated as











P P G

P P G

S

A

∀ ∈

† †

† †

χ

χ

k

T

E T T T

E T T T

max min f ( )

such that K

Re( )− [ ( − )] = 0,

Im( )− [ ( − )] = 0,

(14)

k k

k k

T T
0

i −1
0

i −1
0

which is a QCQP. Because the enforcement of fewer con-
straints always leads to maxima of greater or equal value 
(minima of equal or smaller value) in any optimization, 
the imposition of any collection of constraints that can be 
formed from K may be used to construct a relaxed QCQP 
that contains the feasible set (the set of fields that respects 
every imposed constraint) of equation (14) — an optimi-
zation with maxima (minima) at least as large (small) as 
equation (14). Any bound on such a relaxed programme 
is necessarily a bound on equation (14). Hence, by apply-
ing any further relaxation, such as Lagrange duality or 
semi- definite programming41, it is possible to obtain 
limits on the physically realizable values of Tf ( )0 ∣ ⟩  that 
universally apply to any material structure within Ω 
(see eF36–41,103,136,137). As highlighted below, the extent 
to which these limits incorporate various physical phe-
nomena may be tuned by selecting, either by intuition or 
algorithm37, the collection of constraints (P

k
 projections) 

that are concurrently imposed. Moreover, in contrast to 
many traditional approaches to limits where individual 
components of an expression are bounded and then sub-
sequently summed or composed to form a global bound, 
the optimization framework of equation (14) properly 
describes interactions between multiple constraints.

Although no further refinements of equation (14) 
will be examined hereafter, it should be noted that this 
basic optimization bounds approach can, and in certain 
cases should, be extended in at least two meaningful ways. 
First, by moving to complex frequencies as described 
elsewhere18,138, it appears possible to adapt equation (14) 
to treat many broadband and temporal problems. 
Detailed discussions of these modifications can be found 
elsewhere39,139. Second, in situations involving multiple 
incident fields or scattering objectives, including appli-
cations to multifunctional devices — design objectives 
such as optical multiplexing140–142, meta- optic imaging 
components143–146 and optical computing147–149 — it is 

necessary to broaden the scope of the quadratic equali-
ties included in equation (14) to properly account for the 
additional challenges presented by the need to engineer 
multiple field transformations within a common structure. 
A full account of these alterations is given in eF.40.

Representative scattering limits

To build intuition and provide context, the ensuing section 
reviews three increasingly complex tutorial applications of 
equation (14) to set fundamental upper bounds on opti-
cal response. Beginning with the conservation of resistive 
power, focusing on the equivalent problems of maximizing 
thermal emission or net absorption, the modal character-
istics of 0

A
G  in relation to equation (11) are shown to repro-

duce familiar asymptotic results from quasistatics and ray 
optics. However, because the optimization framework 
does not rely on the validity of such approximate forms, 
the limits are also seen to be meaningfully applicable to 
intermediate and wavelength- scale regimes hitherto inac-
cessible to bounds calculations. Next, by further impos-
ing that reactive power be conserved, simultaneously 
enforcing the two constraints in equation (11) through 

P I=
Ω

, limits on achievable scattering cross- sections are 
found to anticipate conditions on the size of the design 
domain under which resonant response is possible for a 
given material choice. Finally — as exemplified through 
calculations of bounds on scattering cross- sections, radi-
ative emission from a dipolar source in the near field of 
body, and power splitting — the set of integral relations 
contained in the relaxations of equation (14) has the effect 
of defining the degree to which the physics of scattering 
theory is enforced, and correspondingly, the number and 
types of integral constraints imposed in calculating opti-
mization bounds function as complements to the differ-
ent number and types of optimization degrees of freedom 
that may be used in structural optimization. For proper 
comparison against realizable devices, constraints must 
be selected in a manner that ‘resolves’ the wave physics of 
the problem: for example, accurate limits on phenomena 
dominated by rapidly decaying (evanescent) fields require 
a greater number of local constraints. In almost all of these 
representative applications, objective values obtained 
through structural ‘topology’ (or ‘density’) optimization 
are found to come within an order of magnitude of their 
determined limit values19.

Resistive power conservation. As a first application of 
equation (14), we discuss how the conservation of resistive 
power sets an upper bound on thermal radiation and, by 
reciprocity, angle- integrated absorption. At a microscopic 
level, thermal emission is the result of stochastically fluc-
tuating electrical currents in matter150,151, with the precise 
relationship between temperature, energy dissipation and 
field fluctuations in an object in equilibrium determined 
by the fluctuation–dissipation theorem152. The basis 
for such a relation may be intuitively understood from 
Brownian motion153. A particle travelling in a fluid expe-
riences a dissipation of its net velocity due to collisions 
with the constituent particles of the surrounding fluid. 
Complementarily, these collisions impart momentum, 
causing fluctuations in the position of the particle about 
its average location, 〈x2〉 = 2Dt, where t is the elapsed time 
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and D is the diffusion coefficient, which by the Stokes–
Einstein relation D = kBT/γ is inversely proportional to the 
the drag (dissipation) coefficient γ (eF.154). An analogous 
relation is seen in the Nyquist formula for Johnson noise, 
〈V2〉 = 4RkBTdν, where V is the voltage between the termi-
nals of an open circuit (such as a conductive wire), R the  
electrical resistance, and dν a frequency interval155.  
The fluctuation–dissipation theorem generalizes and 
formalizes these observations. For the electromagnetic 
settings considered here112,

ħ

′ ′

′ ′








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ij ij
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A
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  

  

where {…} denotes a thermal ensemble average: fluc-
tuations in the current density are point correlated 
and proportional to the dissipative part of the electric  
susceptibility (the optical conductivity).

Exploiting this relation and the incoherent nature of 
the fluctuations, the net emitted power may be expressed 
as a sum over independent radiative channels. Generally, 
the instantaneous power emitted by a current source is

∫ ⋅P t tJ x E x=− ( , ) ( , ) (16)rad
R

where the minus sign results from the convention of 
emitted power. Switching to the spectral domain (the 
convention used here is t ω ωJ x J x( , ) = d e ( , )ωt

−∞

∞
−i∫ ), 

and assuming that the collection of fluctuating dipo-
lar sources distributed throughout the body satisfies 
equation (15), the thermal power radiated by a body 
held at a constant temperature T (see eF114,122,156) is  
given by

G T T G T

  

∫ †

(17)P ω ω T{ } = d Π( , )
2

π
Tr [ ( − )]
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ω

rad

0

∞

0
A A

0
A

Φ( )

where 
ħ

ħ
ω TΠ( , ) =

ω

ω k Texp( /( )) − 1B
 is the Planck thermal 

occupation function, and Φ(ω) the corresponding 
angle- integrated spectral transfer function (absorption 
or emission) of the body; the Tr symbol denotes a trace 
over both the position and polarization indices of the 
dipole sources, which together is the complete set of 
indices of the enclosed operators.

In the breakup of equation (17), the †
−

A
0
A

T T G T term 
contained in Φ constitutes an algebraic description of 
absorption, equation (12), expressed as the subtraction 
of radiated power T G T0

A† , equation (13), from the total 
extracted (extinction) power TA. This association is not 
accidental: as a consequence of reciprocity, evaluating 
the trace over a (delocalized) basis of waves incident  
on the body changes the interpretation of Φ from the net  
emitted power due to dipolar sources within the object 
(thermal emission) to the net power absorbed in the 
body due to incident plane waves (angle- integrated 
absorption), but the algebraic form of Φ remains unal-
tered. Because G0

A describes how outgoing radiation 
carries power away from an object into the surrounding 

environment118,122, a natural basis in which to evaluate 
the trace is the eigenmode expansion

∑ ρ Q Q= , (18)
n

n n n0
A ∣ ⟩⟨ ∣G

with each of the radiative coefficients ρn non- negative 
by passivity. Setting T Q=

n n
T  ( k ZJ T= (−i / )

n n0   
is the resulting electric polarization current density in 
the object resulting from the nth radiative mode), Φ 
becomes

∑ ρ Q T T TΦ=
2

π
(Im[ ]− ) (19)

n
n n n n n0

A
G .

Even without the imposition of a single con-
straint, the form of equation (19) places fairly strong 
restrictions on the extent to which the net absorption 
(emission) cross- section of an object can be enhanced 
compared with its geometric cross- section122. To opti-
mize absorption, it is clear from equation (19) that each 
radiative mode must generate a strong polarization: 

Q TIm[ ]
n n

 is the extracted power. However, the gen-
eration of these currents necessarily leads to radiative 
losses, T T

n n0
A

G , which grow relatively in strength 
as the size of the domain increases through the growth  
of the ρn radiative coupling coefficients86,122.

As a first example of optimization bounds, we ana-
lyse the maximization of Φ subject to the constraint that 
resistive power is conserved:

∀
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† †
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2
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such that

Im[ ]− ( − ) = 0,
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0
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−1
0
A
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G

G

effectively the simplest version of equation (14). Owing to 
the form of Φ, the only difference between the objective  
and constraint in equation (20) is the material loss term 
∣∣Tn∣∣

2/ζ, with the factor ζ χ χ/Im[ ]2
≡  quantifying the 

maximum magnitude that the polarization current den-
sity can achieve relative to the incident electric field157. 
Simply, to maintain equilibrium, the net (integrated) 
power extracted by the object at each frequency must be 
perfectly balanced by the sum of two possible loss mech-
anisms: the absorption of power into material degrees 
of freedom (χ−1†A), here considered to be an infinitely 
large thermal bath158, and power re- radiated (scattered 
or reflected) back into the ambient environment ( 0

A
G ).

Applying the relaxation of Lagrange duality (see 
elsewhere41,97,103,159,160), the optimal objective value of 
equation (20) can be expressed as

∑

ζ
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4
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rate- matching condition τrad,n = τabs,n between radiative 
and material absorption lifetimes. Consequently, it is 
accurate to interpret equation (22) as a model wherein 
an idealized object independently extracts power from 
each of the radiative (multipole) states in a physically 
optimal way, with ρn and ζ setting limits on the asso-
ciated coupled- mode radiative and dissipation rates for 
every channel. As discussed in greater detail below, this 
perspective implicitly assumes that resonant response is 
achievable in each individual channel, and that attaining 
resonant response in one channel has no implications 
for any other (a consequence of ignoring constraints 
imposed by the conservation of reactive power). Neither 
assumption is typically true in practice.

Total power conservation. Given the remarkable agree-
ment observed in F. 4b between the absorption char-
acteristics of structures obtained by computational 
techniques and the associated bounds, it is natural to 
wonder whether related conclusions can be drawn for 
all basic scattering quantities; namely, to what extent are 
the results of current inverse methods explained by the 
basic necessity of conserving power?

Recalling that the power scattered from an initial 
electric field Ei  at a single frequency ω is102,103

† †
P

k

Z
E E=

2
[ − ( ) ] , (23)

sct
0 i A −1 A i

T T V T

the problem of maximizing the scattering cross- section 
of an object contained within a design volume Ω 
becomes the optimization statement

∈

†

† †

† †

χ

χ

χ

k

Z
E T T T

E T T T

E T T T

max
2

[Im( )− ]

such that

Im( )− ( − ) = 0,

Re( )− ( − ) = 0,

(24)
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i −1
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where Ei  is the electric field of an incident plane wave 
and, as before, TT E= i . If only the conservation of 
resistive power is imposed, the solution of equation 
(24) closely mirrors the coupled- mode expression for 
integrated emission given by equation (22). However, 
as is clear from a comparison of the solid (enforcing 
total power conservation) and dashed (enforcing only 
resistive power conservation) lines of F. 5 (particularly 
in panel b), the inclusion of the global reactive power 
constraint, the final line of equation (24), leads to sub-
stantially tighter limits, with the cost that the solution of 
equation (24) does not have a simple semi- analytic form 
(except for the single channel asymptotic examined in 
the Supplementary Information). The physical mecha-
nism underlying these differences is the appearance of 
phase information. Paralleling the well- known response 
characteristics of a simple harmonic oscillator, when 
only the conservation of resistive power is enforced 
there is a bound on the relative magnitude of T  set by 
material absorption and radiative emission. All infor-
mation about the relative phase offset of the response, 
partially set by χ ωRe[ ( )], is ignored. Once the need to 

conserve reactive power is taken into account, physical 
restrictions are placed on both the relative magnitude 
and phase of the response36,103,125. These restrictions can 
either limit, or even exclude, resonant response in cer-
tain situations. Here, by resonant response, we mean 
that, under sufficiently small changes to the material 
properties of a design, there is a field observable that 
scales roughly ζ χ ω χ ω= ( ) /Im[ ( )]2

∝ .
Most notably, as confirmed by F. 5b, when confined 

to a spherical subwavelength domain, the largest possible 
scattering cross- section that can be achieved by struc-
turing a dielectric material is exactly the ∝V2 Rayleigh 
scattering of a ball166 (see Supplementary Information 
and eF.103 for further details).

The inclusion of reactive power also implies consider-
able alterations to the mathematical model and interpre-
tation of equation (24) as compared with equation (20). 
Precisely, the sum form of Φopt given by equation (22)  
arises because both the objective and constraint of equa-
tion (20) are diagonalized in an eigenbasis of 0

A
G . When 

further physical constraints are imposed (such as global 
reactive power or the local constraints introduced in 
the next set of examples) simultaneous diagonalization 
is rarely possible. In part indicating the richness of the 
physics being described, the symmetric and antisym-
metric components of the Green’s function, G0

S and 0
A

G , 
do not share a common eigenbasis38,167. Hence, whenever 
response characteristics are not dominated by the con-
servation of resistive power, it is generally not possible 
to describe scattering phenomena in terms of an orthog-
onal basis of weakly interacting modes. Once both 
aspects of the Green’s function are included, radiative 
channels are mixed both among themselves and with 
non- radiative states. Relatedly, although the content dis-
cussed in the Supplementary Information stands as an 
exception, there is typically no simple way to use optimi-
zation bounds as means of doing parameter extraction 
for coupled mode theory.

Local constraints. Extrapolating from the last two exam-
ples, enforcing that total power must be conserved is 
found to capture almost all relevant physical effects that 
limit achievable scattering characteristics for propagat-
ing waves — far- field applications such as maximizing 
plane- wave absorption, thermal radiation122 and scat-
tering cross- sections36,37,103,168. However, when applied 
to objectives governed by rapidly varying (evanescent) 
fields or multiple length scales, these coarse characteri-
zations of the integral-wave relations may miss impor-
tant aspects of the problem, leading to bounds with 
little connection to reality38,39. Specifically, contrasting 
equation (24) with the system of equations that must 
be solved to approximate Maxwell’s equations numeri-
cally, it is clear that imposing global power conservation 
(a total of two constraints) cannot possibly capture all 
relevant wave features: the use of =

Ω
P I  in equation (11) 

only guarantees that scattering theory is true on average 
over the volume of the domain. At any spatial point, the 
solution resulting from an optimization problem state-
ment such as equation (24) may violate equation (6), so 
long as these violations cancel each other when inte-
grated over the entire scattering domain. To remedy 
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this issue, additional physics in the form of localized 
constraints incorporating higher spatial resolution can 
be included (see F. 6).

Owing to the nature of the relaxation techniques 
commonly used to solve optimization bounds (see 
eF38,41), the spatial oscillation of such local violations 
of ‘true’ physics tend to track the spatial oscillations of 
the incident field, as seen in F. 6b, and accordingly, by 
imposing localized projections ( = PP I  where P ⊂ Ω) in 
equation (11) targeting a specific region of violation, it 
is usually possible to guide optimization limits towards 
increasingly physical characteristics: the vacuum Green’s 
function G0 does not propagate all information equally, 
but rather blurs rapid field fluctuations as the point of 
observation moves away from the source. As such, for 
each design problem there are characteristic lengths 
below which differences between field solutions have no 
pragmatic relevance. If independent constraints enforce 
‘averaged’ physics on a grid finer than the smallest of 
these length scales, then the solution of equation (14) 
should differ little from what is realizable in practice169. 
Directly, the number and distribution of local constraints 
can be viewed as ‘tuning knobs’ incorporating physics 
at the expense of computational complexity, with the 
caveat that the bounds are generally evaluated by convex 
relaxation instead of the exact solution to equation (14).

These ideas are exemplified by the minimum- radius 
limits on a 2D power splitter, distributing power from an 
incident wave equally between 2n + 1 cylindrical wave 
channels, depicted in F. 6a (eF.39). In asserting only the 
conservation of global power, the minimum diameter 

asymptotes to ~λ/3, a size at which it begins to become 
possible for a non- physical response oscillating near 

λ χ/ Re( ) + 1  to satisfy global power conservation while 
maintaining large local violations. Conversely, when 
local constraints are added, this asymptote disappears, 
and the required radius (suggesting increasing device
complexity) begins to grow steadily with the number of 
power divisions desired. In F. 6b, the strict use of global 
constraints similarly suggests that shortly after attaining 
a resonance criteria of R ≳ λ/5, by structuring a material 
with Re(χ) = 16 within a spherical ball of radius R, it is 
possible to enhance the scattering cross- section inversely 
proportional to material loss (Im(χ)). No such scaling 
is found in computationally synthesized structures, 
marked in the figure by dots, and under the imposition 
of eight (evenly spaced) radial shell constraints this 
non- physical feature all but vanishes.

Stemming from the need to properly describe sub-
wavelength field characteristics, local constraints are 
also generally required to formulate relevant limits  
on near- field phenomena. Following F. 6c — bounds on  
the maximization of radiative Purcell enhancement for 
a dipolar current source separated from an arbitrary 
device by a distance d, again contained within a spher-
ical ball of radius R — when only global constraints 
are considered enhancement is seen to scale ∝1/Imχ 
when d ≪ λ (light lines), as is characteristic of material  
loss limited resonant response65. Upon inclusion of 
localized constraints defined over concentric spherical 
shells (dark lines), the maximal radiation is observed 
to drop by several orders of magnitude and no longer 
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Fig. 5 | Bounds on scattering cross-sections based on the conservation of 

total power. a,b | Results of equation (24) as a function of the size (radius R/λ) 

of a spherically bounded design volume for two representative values of 

χ ω[ ( )]Re near optical frequencies (a near plasmonic metal, a, and a strong 

dielectric, b). Dashed lines result from imposing only the conservation of 

resistive power; solid lines result from additionally imposing the conservation 

of reactive power. The dots appearing in both panels mark scattering 

cross- sections achieved in actual geometries discovered by numeric (inverse) 

design, for χ = −10 + i10−1 and χ = 16 + i10−6 respectively. For the metal 

structures in a, aligned cross- hatched dots result from binarizing the 

discovered permittivity profiles, which are otherwise allowed to take on 

‘greyscale’ values19. Two sample structures are shown as insets, with the plane 

wave incident from the more solid side of both designs (from the left in a, from 

the right in b) and aligned along the left–right symmetry axis. Again, in the 

limit that R/λ ≫ 1 or R/λ ≪ 1 the calculated bounds approach the scaling 

predictions of ray optics (geometric cross- sections) and quasistatic scattering 

(∝V2), irrespective of the electric susceptibility. The inclusion of reactive power 

conservation for strong metals (Re 3[ ( )]≪χ ω − ) confined to small design 

volumes (R/λ ≪ 1) shows that the structuring needed to achieve resonant 

scattering away from the plasmon condition of χ ω =−[ ( )]Re 3 reduces 

achievable material scaling characteristics — the appearance of ‘dilution 

factors’. The effect of total power conservation on obtained limits for 

dielectric materials confined to subwavelength domains is more radical — 

causing the appearance of ‘resonance gaps’ — leading to the general 

conclusion that scattering cross- section enhancements surpassing about 200 

should not be expected for near optical frequencies. Panels a, b are

reproduced with permission from eF.103, under a Creative Commons licence 

CC BY 4.0.
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It is not yet understood whether, or under what con-
ditions, the convex relaxation techniques that are used 
to obtain optimization limits can be guaranteed to solve 
their associated QCQPs; for example, whether the limit 
is equal to the true QCQP solution or just some larger 
(smaller) value. Non- affine equality constraints such 
as the conservation of resistive and reactive power are 
non- convex, and QCQPs with non- convex constraints 
are not generally thought to be solvable by any convex 
relaxation41,176. However, a vast majority of investiga-
tions have found that calculated limit fields are in fact 
optimal solutions of the initial optimization problem 

statement35,36,38, with inclusion of large numbers of local 
constraints only resulting in numerical ill- conditioning. 
Such guarantees are not merely a theoretical exercise. 
So long as the underlying QCQP is actually solved, the 
addition of increasingly fine localized constraints in 
the bounds computations leads to progressively better 
approximations to an optimal realizable polarization 
field, and this information could be leveraged to great 
effect in inverse design. For instance, it could be used 
as a starting point for adjoint optimization to recover a 
near optimal structure (F. 7), or as a guide for the design 
parameters that should be considered to possibly realize 
improved performance characteristics. Furthermore, it 
is probably not necessary to enforce local constraints 
down to the computational pixel level to make use of 
these potentially powerful connections; a coarse distri-
bution may be enough to extract an approximate optimal 
structure. Indeed, the onset of ill- conditioning with finer 
local constraints suggests that, depending on the design 
problem, there is a characteristic length scale beyond 
which more detailed structuring becomes unnecessary.

On a related note, although the bounds computation 
is convex, it is not necessarily easy to solve numerically. 
Besides ill- conditioning resulting from the imposition of 
large numbers of local constraints, numerical instabili-
ties also occur in systems with low loss (such as semi-
transparent media). To address this, it may be possible 
to formulate alternate constraints better suited to handle 
low- loss/lossless design problems; one example is given 
by eF.168, although the proposed constraints appear to 
provide non- trivial limits only for small design regions 
and low dielectric contrasts.

The large scale of most practical photonics problems 
also poses a challenge: current demonstrations of the 
framework are restricted to 2D39–41,168 or highly sym-
metric domains in 3D, exploiting efficient spectral basis 
representations35,36,177 to limit the size of the associated 
system matrices. Beyond these early proof- of- concept 
explorations, there is much room for development of 
standardized packages for evaluating limits (possibly 
in conjunction with inverse methods) on 3D photonic 
devices by exploiting general- purpose techniques — 
numerical Maxwell solvers using localized bases — and 
open- source optimization methods178.
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Fig. 7 | From performance bounds to structural optimization. Through the common 

denominator of spatial divisions, a complementary relationship exists between inverse 

design and performance bounds. In inverse design, the non- convex optimization 

problem of structural optimization is heuristically approximated by particular designs 

representing local optima, with resulting device performance generally increasing with 

additional structural degrees of freedom. In optimization bounds, a coarse- grained 

version of the same optimization problem is bounded by exploiting some convex 

relaxation in order to determine a value that must be respected by all allowed designs, 

with resulting limits generally becoming tighter under the use of additional constraints. 

Consequently, as the number and resolution of the local constraints going into a bound 

quadratically constrained quadratic programme (QCQP) increases, its solution field 

typically becomes an increasingly better approximation of the polarization field of a 

globally optimal structure. This observation suggests a potential, presently unexplored, 

workflow for the computational design of photonic devices: evaluate the limits of an 

application to a tightness wherein the approximate field distribution can be extracted 

and used as a starting point for the discovery of near optimal structures. Two artistic 

interpretations of this workflow are depicted by the left- and right- hand sides of the 

figure. On the left, the true extent to which the limit polarization field (red–white– 

blue colours) is determined is shown to converge to a simplistic underlying optimal 

structure with increasing constraint resolution. On the right, the polarization fields are 

representative of what would realistically come out of computations — fully resolved 

fields and structure converging towards some final optimal structure as the resolution  

of the imposed constraints is improved.
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