Études

Diplôme d'études supérieures spécialisées (DESS) en Génie des matériaux

Ce programme s'adresse à des candidats possédant un diplôme de premier cycle de nature scientifique et désirant compléter leur formation en matériaux à l'aide de cours de cycles supérieurs.

Ce programme s'adresse aux candidats désirant parfaire leur formation en design, caractérisation et fabrication dans le domaine du génie des matériaux. Le programme a pour objectif l'approfondissement des connaissances des caractéristiques physico-chimiques, mécaniques et microstructurales des matériaux dans le cadre d'applications spécifiques, particulièrement sur les propriétés fonctionnelles des matériaux et sur leur mise en forme.

Responsable(s)
Michel MEUNIER
(514) 340-4711 poste : 4971
Diplôme

Le programme d'études supérieures spécialisées en génie des matériaux conduit à l'obtention du Diplôme d'études supérieures spécialisées (DESS).

Structure du programme pour l’année en cours

Le programme comporte 30 crédits se répartissant comme suit:

  Crédits
Structure Min. Max.
Cours de base1 9 12
Cours de spécialisation2 18 21

(1) Les cours de base sont exigés afin de permettre à l’étudiant d’acquérir une connaissance générale du génie des matériaux et ainsi lui permettre de poursuivre des études avancées dans l’un des axes de spécialisation.

(2) Dans certains cas l’étudiant pourrait suivre des cours autres que ceux spécifiés ci-dessous, mais qui ont été approuvés par le directeur d’étude.

Légende

  Projet
  Offert à l'université de Montréal
  Cours des cycles supérieurs
  Cours de jour
  Cours de soir
  Cours en ligne
Certificats et microprogrammes de 1er cycle
Baccalauréat (formation d'ingénieur)
Études supérieures

Domaines d'application

La spécialisation en génie des matériaux concerne une large gamme d'aspects reliés à la conception des pièces ou structures, aux procédés de mise en œuvre ainsi qu'à l'étude de leur comportement en service. Les connaissances de base portant sur les différentes familles de matériaux (métaux, polymères, composites, céramiques, semi-conducteurs, supra conducteurs, matériaux organiques) et sur les méthodes permettant de les caractériser et d'évaluer leur performance sont essentielles dans plusieurs domaines d'application: énergie (hydroélectrique, éolienne, solaire, photovoltaïque, thermoélectricité, nucléaire, stockage d'énergie), transports (aéronautique, ferroviaire, automobile), biomatériaux (biocapteur, prothèse, matériaux organiques), métallurgie (transformation, optimisation des procédés métallurgiques), électronique et télécommunication (matériaux électroniques et photoniques, semi-conducteurs, diélectriques, fibres optiques).

Liste des cours

Cours de base

Note Sigle Titre Crédits Trimestre Période
MTR6010
 
Structure et propriétés des matériaux 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : 80 crédits pour les étudiants au baccalauréat
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Liaisons interatomiques. Structure cristalline: concept de la microstructure, postulats de la cristallographie, réseaux directs, réseaux réciproques, imperfections, microstructure. Symétrie et propriétés physiques des cristaux, groupes ponctuels, groupes d'espace, tables internationales de cristallographie. Matériaux non cristallins : verres, amorphes, polymères, solides macromoléculaires. Propriétés mécaniques : comportement mécanique, élasticité, déformation plastique. Dégradation des matériaux : corrosion, fatigue, fluage. Propriétés électromagnétiques: métaux, semi-conducteurs, isolants, matériaux photoniques, matériaux magnétiques.
MTR6020
 
Thermodynamique des matériaux 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) : 80 crédits pour les étudiants au baccalauréat
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Application des lois de la thermodynamique à l'équilibre chimique. Diagramme volume-température-pression. Modélisation et calcul des diagrammes de phase. Interprétation des diagrammes de phases. Équilibre dans les systèmes multi-phases. Thermodynamique des surfaces et interfaces. Thermodynamique statistique : relation entre les propriétés micro- et macroscopiques. Applications : structures cristallines, transformations de phase, magnétisme, thermoélectricité, réactions physico-chimiques.
MTR6030
 
Cinétique des matériaux 3
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : 80 crédits pour les étudiants au baccalauréat
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Construction des théories cinétiques. Solution de l'équation de diffusion; homogénéisation. Mécanismes de diffusion atomique. Diffusion interstitielle : activation thermique, diffusion à l'état stationnaire et non stationnaire. Diffusion substitutionnelle : « auto » diffusion, diffusion par les lacunes, mobilité atomique. Diffusion à travers les joints de grains, les dislocations et les surfaces. Précipitation aux joints de grains. Durcissement structural. Diffusion dans les systèmes binaires multi-phases. Frontières dans les solides monophasés : effet de l'activation thermique sur la migration des joints de grains, cinétique de la croissance du grain. Solidification : germination et croissance d'un solide pur; pièces moulées et soudures par fusion. Études de cas. Transformations par diffusion dans les solides : germinations homogène et hétérogène. Croissance du précipité. Caractéristiques de la transformation sans diffusion. Cinétique de transformation de phases sous éclairement ou sous tension électrique. Réactions de surface et d'interface : adsorption, désorption, diffusion, germination, croissance, rôle des propriétés de surface, exemples de cinétiques de réactions aux surfaces et aux interfaces.
MTR6040
 
Caractérisation des matériaux 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : 80 crédits pour les étudiants au baccalauréat
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Analyse de la microstructure et de la composition : microscopies optiques, diffraction des électrons, microscopie à sonde balayée (effet tunnel, force atomique), microscopie électronique (à balayage, en transmission). Méthodes spectroscopiques non destructives explorant les interactions des électrons, des ions et des photons avec les solides et les surfaces. Méthodes destructives d'analyses quantitatives de la composition : méthodes par plasmas, par mise en solution et alternatives. Méthodes d'analyses couplées (composition, structure). Effet de l'environnement sur la stabilité et la performance des matériaux.

Cours de spécialisation

Note Sigle Titre Crédits Trimestre Période
ELE8508
 
Concepts fondamentaux de photonique 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 1.5 - 4.5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie électrique
Préalables(s) : ELE3500, ELE3701A
Corequis :
Trimestre : Hiver 2019
Période :
Notes : Ce cours est offert uniquement en anglais.
Responsables(s) : À venir
Description
Concepts fondamentaux sur la lumière et la matière, la vitesse de phase et les interférences lumineuses. Étude des diélectriques en relation avec les fibres optiques et les guides d'ondes planaires. Propagation de la lumière dans les composants passifs – réseaux de Bragg, et actifs – effet Faraday. Sources lasers à semi-conducteur et fibre, amplification en fibre, applications pour la détection de paramètres physiques ainsi que biologiques, applications laser femto secondes, étude détaillée des méthodes de détection et de mesure optiques. Matériaux optiques non linéaires et fibres optiques : applications en communication et dans l'atténuation des effets de dispersion délétères affectant les solitons. Introduction aux réseaux optiques. « Funoptical fibres » : une approche nouvelle.
ENE8310
 
Stockage et intégration des syst. énergéti. 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : 70 crédits pour les étudiants au baccalauréat
Corequis :
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : Oumarou Savadogo
Description
Thermodynamique et stockage de l'énergie. Efficacité du stockage et de la récupération de l'énergie. Différentes formes de stockage énergétique. Stockage chimique : biomasse, méthane et hydrogène. Stockage électrochimique : accumulateurs, condensateurs et piles à combustible. Stockage sous forme potentielle : hydraulique et air comprimé. Stockage sous forme cinétique : volant d'inertie. Stockage thermique : chaleurs sensibles et latentes. Stockage magnétique. Capacité et rendement des différents types de stockage. Enjeux technologiques et économiques du stockage. Intégration des systèmes de stockage dans la production et la distribution de l'énergie. Éléments d'intégration des systèmes d'énergie renouvelable. Spécifications et choix des composants d'intégration. Capacité d'intégration et fiabilité du réseau. Études de cas de systèmes isolés et de systèmes intégrés à un réseau existant.
GBM8540
 
Corrosion et dégradation des biomatériaux 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : 70 crédits pour les étudiants au baccalauréat.
Corequis :
Trimestre : Hiver 2019
Période :
Notes : cours donné à Polytechnique. L'étudiant de l'Université de Montréal doit obtenir une « Autorisation d'études hors établissement » pour s'y inscrire.
Responsables(s) : À venir
Description
Biomatériaux : définitions, spécificités, utilisations. Classes de biomatériaux : polymères, composites, métaux, alliages, céramiques d'origine naturelle ou de synthèse utilisés comme composants des dispositifs médicaux. Corrosion et dégradation: thermodynamique et cinétique. Paramètres de corrosion de différents biomatériaux. Formes de corrosion des matériaux d'implants. Tests standards pour déterminer les paramètres de corrosion d'un implant. Modes de dégradation des biomatériaux. Effet de la composition du matériau et du sérum sur la corrosion et la dégradation des implants; cas des prothèses de hanche et des implants de genou; corrosion des alliages dentaires. Prévention de la corrosion et de la dégradation de divers implants biomédicaux. Classification des alliages dentaires. Choix des biomatériaux. Études de cas.
GBM8555
 
Biocompatibilité et sciences des biomatériaux 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) : 70 cr. pour les étudiants au baccalauréat
Corequis :
Trimestre : Automne 2018
Période :
Notes : cours donné à Polytechnique. L'étudiant de l'Université de Montréal doit obtenir une « Autorisation d'études hors établissement » pour s'y inscrire.
Responsables(s) : Hocine Yahia
Description
Introduction à la biocompatibilité et aux sciences des biomatériaux. Rappel de la réponse de l'hôte aux corps étrangers. Rôle du complément dans l'inflammation, réponse des macrophages et cascade de coagulation en présence de biomatériaux. Immunoisolation en thérapie cellulaire. Hémocompatibilité des implants cardio-vasculaires. Biocompatibilité des implants orthopédiques. Biocompatibilité des nanomatériaux. Neuroprothèses et implants électroniques. Nanodispositifs et senseurs biomédicaux. Biomatériaux émergents (matériaux à mémoire de forme, électroactifs, magnétostrictifs et piézoélectriques). Biomatériaux et infections nosocomiales.
GBM8570
 
Biomatériaux 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) : (MTR1035 ou MTR2000), GBM2214, GBM3103 et 70 crédits pour les étudiants au baccalauréat
Corequis : Aucun
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : Nancy Tawil
Description
Concepts de biocompatibilité et de biofonctionnalité des matériaux. Classes de matériaux utilisés en médecine : métaux, céramiques, polymères et biocomposites. Tissus et cellules biologiques. Réactions de l'hôte aux biomatériaux et leur évaluation : processus de guérison et inflammation, réponse immunitaire aux corps étrangers. Essais biologiques des biomatériaux (normes ISO). Dégradation des matériaux dans un environnement biologique. Applications des matériaux dans la conception des dispositifs médicaux et des organes artificiels : implants et dispositifs cardiovasculaires, orthopédiques, dentaires et ophtalmologiques. Aspects pratiques des biomatériaux : stérilisation des implants et des dispositifs. Classification réglementaire des biomatériaux et des dispositifs médicaux. Développement durable et éthique en biomatériaux.
GBM8605
 
Médecine regénératrice et nanomédecine 3
Nombre de crédits : 3 (3 - 2 - 4) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : GBM3610 et GBM3620 ou l’équivalent
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Administration de médicaments : systèmes classiques et nouvelles méthodes nanomédicales; identification de thérapeutiques (protéines recombinantes, pDNA, RNAi) et systèmes de transport des gènes (vecteur viraux, liposomes, polyplexes). Cellules souches : cellules souches/progéniteurs, embryonnaires et somatiques; voies moléculaires de la régulation, différenciation et réplication, et leur rôle dans la régénération des tissus. Génie tissulaire : application de biomatériaux (solides, gels, matrices, tissus dévitalisés) comme conduits pour la régénération; caractérisation et propriétés fonctionnelles pour stimuler la régénération de tissus, promotion de la survie et de l'intégration des cellules livrées; bases moléculaires et biochimiques de la vascularisation et de l'angiogenèse dans les tissus et organes natifs et exogènes. Applications : régénération de tissus orthopédiques, neurologiques et cardiovasculaires; maladies métaboliques, hématologiques et infectieuses.
GBM8670
 
Immunité et interactions biomoléculaires 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 2 - 4) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : GBM1620 et 70 Crédits pour les étudiants au baccalauréat
Corequis : Aucun
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : À venir
Description
Système immunitaire (SI). Réponse immunitaire innée et adaptative. Composants du SI: soi et non-soi, protéines membranaires, cellules de l'immunité (lymphocytes T, B et ni T ni B, CPA), organes du système immunitaire (lymphoïdes centraux et périphériques), molécules du système immunitaire (anticorps, complément, cytokines). Maladies liées au système immunitaire: cancer et autres. Problème du rejet de greffe. Applications des principes du SI: techniques expérimentales et diagnostiques; applications en santé ou immunothérapie et vaccination. Biomatériaux implantés dans l'organisme. Types de réactions immunitaires face à ces biomatériaux.
GBM8810
 
Nanotechnologie biomédicale 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : GBM3805 ou l’équivalent
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Michel Meunier
Description
Concepts physiques de la nanotechnologie et applications en biomédical. Différentes approches en nanotechnologie. Fabrication et fonctionnalisation des nanomatériaux métalliques et semiconducteurs utilisés en biomédical. Bionanoplasmoniques : concept de plasmons, théorie de Mie, nanophotothermie et applications thérapeutiques. Nanobiocapteurs optiques : théorie et application de la plasmonique, biocapteurs à base de résonance de plasmons de surface. Nanophotonique biomédicale : points quantiques, pinces optiques et nanochirurgie par laser. Nanomagnétisme biomédicale : propriétés des nanomatériaux magnétiques et applications en biodétection et en thérapie. Éthique et enjeux sociaux des nanotechnologies en biomédical.
GBM8871
 
Biomicrosystèmes 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 3 - 3) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : 70 CRÉDITS, MTH1115 (OU ÉQUIVALENT)
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Thomas Gervais
Description
Introduction aux microsystèmes dédiés aux applications biologiques et aux laboratoires sur puces. Miniaturisation et effets d'échelle. Techniques de microfabrication dans le verre, le silicium et les polymères. Techniques de fonctionnalisation de surfaces. Propriétés des écoulements visqueux. Diffusion, convection et réaction dans les milieux aqueux. Capillarité. Effets électrocinétiques sur puces. Composantes de circuits microfluidiques : résistances hydrauliques, valves, mélangeurs, pompes. Applications des principes étudiés à la conception de biomicrosystèmes : modélisation par éléments finis, libération contrôlée de médicaments, PCR (polymerase chain reaction) sur puces, culture cellulaire 2D et 3D sur puces, séparation et piégeage par électrophorèse, biocapteurs intégrés.
GCH6101
 
Chimie physique des polymères 3
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Généralités sur les polymères synthétiques. Principe de la synthèse des polymères. Aspects théoriques, cinétiques et statistiques de la polymérisation et de la copolymérisation. Transition et cristallinité. Propriétés : rhéologie, physicochimie, mécanique. Structure configurationnelle et architecture moléculaire : isométrie, ramifications. Caractérisation : identification (méthodes spectroscopiques), masses moléculaires et distribution de masses. Thermodynamique des solutions et mélanges polymères.
GCH6104A
 
Rhéologie des polymères 4
Hiver 2019
Cours de jour
Nombre de crédits : 4 (3 - 1.5 - 7.5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : GCH6912A ou l'équivalent
Corequis :
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : À venir
Description
Phénomènes rhéologiques pour les polymères fondus ou en solution. Analyse de problèmes dans l'industrie des plastiques, des caoutchoucs, des peintures, dans l'industrie pharmaceutique et alimentaire. Comportements non newtoniens des fluides complexes. Viscoélasticité et théories moléculaires s'appliquant aux phénomènes importants observés avec les polymères. Projet de laboratoire sur les méthodes modernes de la rhéométrie.
GCH6108
 
Systèmes polymères multiphasés 3
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Mélanges polymères miscibles et immiscibles : thermodynamique, séparation des phases, morphologie, phénomènes à l'interface, rhéologie et propriétés physiques (résistance mécanique, cristallisation) des mélanges polymères. Relation : mise en forme, morphologie, propriétés dans les mélanges polymères. Procédés réactifs.
GCH8106
 
Ingénierie des emballages polymères 3
Nombre de crédits : 3 (3 - 1.5 - 4.5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : GCH3105, GCH3510 ou l'équivalent
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : Abdellah Ajji
Description
Ingénierie des emballages polymères : importance des emballages dans l'industrie de la transformation alimentaire, introduction aux emballages polymères, caractéristiques des emballages à base de polymères, procédés d'emballage des aliments. Transfert de masse au travers d'un emballage : perméabilité et diffusion des gaz en régime permanent, effet des différents paramètres, mesures expérimentales, structures multicouches, estimation de la durée de vie d'un produit alimentaire sur les tablettes. Conception et fabrication d'emballages : matériaux utilisés, procédés de fabrication. Considérations environnementales : recyclage, matériaux biodégradables, principes de l'analyse de cycle de vie d'un emballage. Aperçu des réglementations canadiennes et américaines : toxicité, lois, règlements.
MEC6306A
 
Comportement mécan. des matér. composites 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) :
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Rachid Boukhili
Description
Mécanique des matériaux composites. Lois de la micromécanique. Mécanique de la monocouche. Théorie des stratifiés. Application des critères de rupture aux composites. Essais mécaniques statiques. Traction, compression, cisaillement plan, flexion et cisaillement interlaminaire. Comportement au choc et à la fatigue des matériaux composites.
MEC6318
 
Fabrication des composites par injection 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) :
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Eduardo Ruiz
Description
Méthodes de fabrication des composites par injection sur renforts. Caractérisation des matériaux : perméabilité saturée et insaturée, capillarité, vitesse d'imprégnation critique, viscosité des résines polymères, cinétique de polymérisation des résines polymères, conductivité thermique d'un composite, évolution des propriétés mécaniques et retrait à la cuisson. Préformage des renforts. Modélisation des procédés de fabrication isotherme : moule fermé, loi de Darcy, injection rectiligne, radiale, injection à pression ou débit constant. Écoulement en milieu poreux compressible : infusion, injection sous paroi mobile ou sous membrane flexible. Injection non isotherme : transfert de chaleur convectif, cuisson du composite, retrait et contraintes résiduelles. Optimisation du débit d'injection. Minimisation de la porosité et contrôle du procédé
MEC6413
 
Matériaux métalliques, caract. et utilisation 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Choix et utilisation des matériaux pour divers éléments structuraux dont les réservoirs sous pression. Caractérisation : tension, torsion, dureté, impact, fluage, fatigue, propagation des fissures. Caractéristiques mécaniques des matériaux métalliques couramment utilisés : aciers structuraux, aciers pour réservoirs sous pression, aciers inoxydables, alliages d'aluminium, alliages pour opération à hautes températures. Critère de design des éléments structuraux : vie sécuritaire et tolérance au dommage. Exigences du code de l'ASME pour les matériaux : niveau de contraintes permises, essais hydrostatiques, prévention de la rupture fragile sous chargement variable, inspection périodique.
MEC6510A
 
Fabrication en aéronautique et microsystèmes 3
Automne 2018
Cours de jour Cours de soir
Nombre de crédits : 3 (2.5 - .5 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) :
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Marek Balazinski
Description
Méthodes de fabrication des pièces spécifiques pour l'industrie aéronautique. Techniques de fabrication conventionnelles et non conventionnelles. Usinage et fabrication de grande précision des alliages et des composites aéronautiques. Méthodes d'intelligence artificielle appliquées en fabrication. Aspects écologiques de fabrication. Introduction aux micro et nanotechnologies. Techniques de microfabrication. Usinage laser. Applications technologiques de microsystèmes.
MEC6619
 
Usinage des alliages aérospatiaux 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Définition technologique des produits aéronautiques. Étude de problèmes spéciaux d'usinage, basées sur la synthèse des connaissances en appliquant des technologies de pointe utilisées par l'industrie aéronautique. Usinabilité des matériaux spécifiques : alliages légers (Al, Mg, Ti), aciers alliés, alliages de Ni, aspect économique d'usinage. Particularités de fabrication des pièces de moteurs d'avion. Modelés analytiques de tournage, fraisage et perçage. Déflection des outils pendant l'usinage. Vibrations structurelles pendant l'usinage. Analyse modale, analytique et expérimentale. Broutage et stabilité en fraisage. Conception d'un outil de fraisage à pas variable.
MEC8415
 
Endommagement par fatigue-fluage 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) : 70 cr. pour les étudiants au baccalauréat
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Daniel Therriault
Description
Classification rhéologique des solides réels et révision des modes de rupture. Comportement macroscopique des matériaux viscoélastiques et viscoplastiques sous charge statique (fluage) et cyclique (fatigue). Lois de comportement mécanique; modèles de fissuration. Aspect phénoménologique du processus d'endommagement en fluage et en fatigue; modèles particuliers du dommage cumulatif. Interaction des deux processus. Concept de vie sécuritaire en design et concept de vie en tolérance de dommage pour prévenir la rupture fragile. Code de l'ASME pour composantes opérant à haute température.
MET6101B
 
Mécanique de la rupture 3
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Comportement d'un matériau ductile en traction uniaxiale et en présence d'un défaut : essai de traction, courbe contrainte-déformation rationnelle; essai Charpy, triaxialité des contraintes, transition ductile-fragile. Mécanique du matériau non fissuré : élasticité isotrope et anisotrope, tenseurs des déformations et des contraintes, critères de plasticité et de rupture. Mécanique du matériau fissuré : champ élastique et écoulement plastique en fond de fissure, calcul du facteur d'intensité de contrainte, essai de ténacité en plasticité confinée. Approches énergétiques en mécanique de la rupture, essai de ténacité en plasticité étendue. Fatigue à grand nombre de cycles et fatigue oligocyclique. Prédiction de la durée de vie d'amorçage : approches locales en contrainte et en déformation. Fatigue-propagation : approche par la mécanique de la rupture. Fermeture des fissures et amplitude effective du facteur d'intensité de contrainte. Exposés sur des sujets variables.
MET6108
 
Procédés de la métallurgie des poudres 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Procédés de fabrication des poudres métalliques. Analyse des caractéristiques morphologiques. Analyse du procédé de pressage uniaxe : rôle des lubrifiants, étude de l'état de contrainte, mécanismes de densification, évolution de la microstructure. Frittage : mécanismes de transport de matière, activation, phase liquide. Procédés à haute densité. Moulage par injection de poudres. Études de cas.
MET6202
 
Procédés d'électrolyse et électrolyseurs ind. 4
Nombre de crédits : 4 (3 - 3 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes : Ce cours est offert indépendamment du nombre d'inscriptions.
Responsables(s) : À venir
Description
Application des recherches récentes à la conception et l'opératiion des électrolyseurs industriels. Réactions parasites, nouvelles approches cinétiques en cémentation et purification, détermination expérimentale des profils de concentration par interférométrie optique. Mécanismes complexes contrôlés par des réactions alternées sous forte densité de courant. Nouvelles théories de la codéposition anomale et normale avec exemples industriels. Développement de nouveaux matériaux électrocatalytiques. Libération d'énergie secondaire aux électrodes avec diminution de la tension de cellule. Innovations technologiques, courants périodiques inverses et conception d'électrolyseurs.
MET6209
 
Applications et opérations du système F*A*I*T 4
Nombre de crédits : 4 (3 - 0 - 9) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes : Le cours est donné conjointement avec l'Université McGill.
Responsables(s) : À venir
Description
Présentation du système F.A.I.T. (Formation Analytique Interactive en Thermodynamique). La base canadienne informatisée de données thermodynamiques disponible sur les ordinateurs de l'École Polytechnique et de l'Université McGill. L'Étude de la base de données (3 000 composés stoechiométriques, 2 000 solutions binaires). Calcul à l'aide du système F.A.I.T. des propriétés thermodynamiques des réactions chimiques, des diagrammes d'équilibre binaires et ternaires, des équilibres multiphasés complexes, des diagrammes d'aires de prédominances, des équilibres aqueux, des diagrammes E-pH (Pourbaix). Analyse de procédés industriels. Travaux pratiques. Projet.
MET6210
 
Cinétique des réactions d'électrodes 4
Nombre de crédits : 4 (3 - 3 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Mécanismes d'électrode en milieu aqueux et sels fondus. Corrosion. Phénomène de double couche. Modèles de circuit électrique analogue, détermination expérimentale des capacités (méthode électrocapillaire, impédance ac, impulsionnelle, autres méthodes).
MET6210
 
Cinétique des réactions d'électrodes 4
Nombre de crédits : 4 (3 - 3 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Mécanismes d'électrode en milieu aqueux et sels fondus. Corrosion. Phénomène de double couche. Modèles de circuit électrique analogue, détermination expérimentale des capacités (méthode électrocapillaire, impédance ac, impulsionnelle, autres méthodes).
MET6211
 
Métallurgie de l'aluminium 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) :
Corequis :
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : À venir
Description
Introduction aux procédés métallurgiques de l'aluminium : procédé Bayer (digestion, filtration, décantation, précipitation de l'hydrate, calcination), procédé Hall-Héroult (chimie de l'électrolyte, réactions électrochimiques, dissolution de l'alumine), technologie du carbone (préparation des cathodes et des anodes), mise au point des alliages d'aluminium (traitement du métal liquide, filtration, enlèvement des alcalins, mise an alliage, coulée). Choix des réfractaires. Perspectives d'avenir pour la production de l'aluminium. Aspects environnementaux.
MET8106
 
Énergie électrochimique 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : MTR2230 ou GCH1110 ou l'équivalent
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Oumarou Savadogo
Description
Définitions de l'énergie électrochimique. Paramètres thermodynamiques et cinétiques. Différence entre piles à combustible, piles non rechargeables et rechargeables. Principe de fonctionnement des générateurs électrochimiques. Réactions aux électrodes. Tension, capacité et énergie théoriques. Effet des paramètres intensifs et extensifs. Énergie spécifique et densité d'énergie des systèmes réels. Caractéristiques et domaines d'applications des piles à combustibles : à électrolyte polymère solide, à acide phosphorique, en milieu alcalin, au carbonate fondu, à électrolyte oxyde solide, à consommation directe d'alcools. Cas de la pile à hydrogène. Bio-piles et bio-senseurs. Comparaison des performances des accumulateurs et des piles non rechargeables. Processus de charge et de décharge d'un accumulateur. Applications au véhicule électrique : enjeux technologiques et environnementaux, bilan énergétique, coût et impact sur les émissions de gaz de réchauffement.
MET8220A
 
Énergie solaire photovoltaïque et applica. 3
Été 2019
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : 70 cr. pour les étudiants au baccalauréat
Corequis :
Trimestre : Été 2019
Période :
Notes :
Responsables(s) : Oumarou Savadogo
Description
Énergie solaire photovoltaïque. Types et propriétés des matériaux utilisés pour la conversion photovoltaïque. Fabrication, principe de fonctionnement et performance des cellules selon le matériau et leur type de dispositif photovoltaïque. Évaluation et classification des cellules. Montage des modules photovoltaïques. Caractéristiques et performances selon la technologie. Lecture de la fiche technique d'un module. Caractéristiques de la batterie, du régulateur et de l'onduleur. Étapes du dimensionnement. Estimation des besoins en énergie de l'utilisateur, évaluation du gisement solaire d'un site. Équations de dimensionnement. Critères de choix du système photovoltaïque. Dimensionnement de systèmes. Installation de champs photovoltaïques. Estimation des coûts d'investissements, d'exploitation et d'entretien. Évaluation de l'impact environnemental. Maintenance, recyclage des composants.
PHS6314
 
Germination et croissance des couches minces 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : PHS3301 ou équivalent
Corequis :
Trimestre :
Période :
Notes : Note 1 : Ce cours sera offert en anglais. / This cours will be offered in English Note 2 : Les cours magistraux feront un usage intensif de l'anglais et les ouvrages de référence proposés sont en anglais. En classe, les interventions des étudiants pourro
Responsables(s) : À venir
Description
Structure et thermodynamique des surfaces. Processus élémentaires sur les surfaces : adsorption, désorption, décomposition, diffusion, ségrégation, îlots, surfactants, croissance sélective, techniques expérimentales. Modes de croissance bidimensionnels : théorie Burton-Cabrera-Frank, croissance par propagation des marches, croissance bidimensionnelle, épitaxie à basse température, modélisation. Couches contraintes : mécanismes de relaxation, modes hybrides, croissance Stranski-Krastanov, auto-organisation, séparation de phase. Théorie de la germination et de la coalescence. Réactions en phase solide : interdiffusion, réactions interfaciales, croissance de grains. Évolution de la micro-nanostructure : modèle de zone, texture, couches minces composites. Effet des photons, électrons et ions sur les processus cinétiques en surface et sur l'évolution microstructurale. http://www.polymtl.ca/etudes/cours/details.php?sigle=PHS6314
PHS6316
 
Physique mésoscopique 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) :
Corequis : PHY6505 ou l’équivalent
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Transport électronique dans les systèmes mésoscopiques. Confinement quantique et cohérence de phase électronique. Formalisme de Boltzmann. Formalisme de Kubo et Greenwood. Formalisme de Landauer et Büttiker. Phénomène de relaxation. Interactions et excitations collectives. Magnétotransport. Spintronique. Fils quantiques. Boîtes quantiques.
PHS6317
 
Nanoingénierie des couches minces 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Techniques avancées de fabrication, des propriétés fonctionnelles des couches minces et des revêtements destinés aux applications en optique, photonique, aérospatiale, génie biomédical, transport, énergie, environnement. Réactions physico-chimiques lors de dépôts assistés par plasma, ions, photons; interactions plasma-surface; diagnostic de procédés. Systèmes multicouches, couches inhomogènes et nanocomposites. Propriétés optiques des matériaux, conception des filtres optiques simples et avancés, métrologie optique - ellipsométrie spectroscopique et rétro-ingénierie. Propriétés nanomécaniques et tribologiques – mécanismes de rupture, d'usure, d'érosion, et de corrosion. Couches actives et matériaux intelligents possédant des propriétés électro et photochromiques, électro-optiques et piézoélectriques, thermoélectriques, thermomécaniques, photocatalytiques et autres.
PHS6319
 
Électronique organique 3
Nombre de crédits : 3 (3 - 0 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes : Note 1 : Ce cours sera offert en anglais. Consulter le descriptif du cours pour plus de détails. Note 2 : Les cours magistraux feront un usage intensif de l'anglais et les ouvrages de référence proposés sont en anglais. En classe, les interventions des
Responsables(s) : Clara Santato
Description
Matériaux organiques semi-conducteurs et conducteurs : structure chimique, structure électronique, caractéristiques physico-chimiques, propriétés photophysiques et photodynamiques, transport de porteurs de charge. Composantes organiques pour l'électronique : diodes électroluminescentes, transistors à effet de champ, transistors électroluminescents, cellules photovoltaïques. Bioélectronique organique. Fabrication et circuiterie de dispositifs organiques.
PHS8302
 
Dispositifs électroniques 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : PHS3301 ou équivalent
Corequis :
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : Clara Santato
Description
Introduction aux composants électroniques de base. Méthodes d'analyse des composants et équations à la base de la méthode dérive-diffusion. Composants de base : jonction p-n, jonction métal/semi-conducteur (MES) et métal-oxyde/semi-conducteur (MOS), hétérojonctions semi-conductrices et structures à dimensionnalité réduite, transistor à effet de champ (TEC) : TEC-MES et TEC-MOS, transistor bipolaire à jonction et à hétérojonction. Survol des dispositifs optoélectroniques : photodétecteurs, modulateurs optiques, diodes électroluminescentes, diodes lasers. Rôle des hétérostructures avancées. Notions de fiabilité. Liens avec les procédés de microfabrication. Mesures électriques des dispositifs à la base des circuits intégrés.
PHS8310
 
Microfabrication 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1.5 - 4.5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : 80 crédits pour les étudiants au baccalauréat
Corequis :
Trimestre : Automne 2018
Période :
Notes : Ce cours sera offert en anglais à l'automne 2018.
Responsables(s) : Yves-Alain Peter
Description
Introduction à la microfabrication et à la nanofabrication. Photolithographie : technologie optique et photorésines. Couches minces : méthodes physiques (évaporation, pulvérisation et laser), méthodes chimiques, dépôt électrochimique, procédé d'oxydation. Gravure: sèche par plasma et en milieu liquide. Notions de nanofabrication. Procédés pour la microélectronique, pour la photonique, pour les microsystèmes microélectromécaniques et les biocapteurs. Applications de la microfabrication. Laboratoire de microfabrication.
PHS8321
 
Caractérisation des matériaux de pointe 3
Automne 2018
Cours de jour
Nombre de crédits : 3 (3 - 1 - 5) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie physique
Préalables(s) : PHS3301 ou équivalent et 70 crédits
Corequis : PHS3105 ou équivalent
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : Ludvik Martinu
Description
Besoins en matériaux de pointe et importance de leur caractérisation pour l'avancement des technologies actuelles : revêtements, couches minces, surfaces et interfaces. Analyse de la structure et de la composition : microscopies optique et électronique, diffraction des électrons, microscopie à effet tunnel et à force atomique, méthodes spectroscopiques utilisant des électrons, des ions et des photons. Caractéristiques des surfaces et des interfaces : travail de sortie, photoémission, tension de surface. Méthodologies de caractérisation des propriétés optiques, mécaniques, tribologiques, électriques, magnétiques, thermiques et de corrosion. Effet de l'environnement sur la stabilité et la performance des matériaux. Conception dans le contexte des applications de pointe en optique, photonique, microélectronique et microsystèmes, aérospatial, automobile, biotechnologie, conversion et économie d'énergie, et autres.

Cours complémentaires

Note Sigle Titre Crédits Trimestre Période
GCH8107
 
Procédés pyrométallurgiques 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (3 - 2 - 4) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) : GCH3100A ou l'équivalent
Corequis :
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : Patrice Chartrand
Description
Rôle des procédés pyrométallurgiques dans la société et au Québec. Opérations unitaires en pyrométallurgie: calcination, grillage, fusion/convertissage, réduction, distillation, affinage. Aspects thermochimiques: diagrammes de prédominance, diagrammes d'Ellingham, conditions d'opérations. Phases liquides: mattes, laitiers, speiss, sels fondus. Compatibilité chimique des réfractaires. Procédés d'élaboration des métaux étudiés via les principaux secteurs comme la sidérurgie: filières des hauts-fourneaux et fours électriques. Production des métaux non-ferreux tels le cuivre et le nickel. Électrolyse de l'aluminium. Production du zinc/plomb. Autres procédés selon l'actualité. Bilans de matière et d'énergie. Logiciel de simulation thermochimique.
MET6103A
 
Techniques de caractérisation des matériaux I 4
Automne 2018
Cours de jour
Nombre de crédits : 4 (4 - 2 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Mathématiques et génie ind.
Préalables(s) :
Corequis :
Trimestre : Automne 2018
Période :
Notes :
Responsables(s) : À venir
Description
Introduction aux principes et aux applications des techniques expérimentales de caractérisation. Sujets traités : optique électronique, interactions électrons-matière et signaux émis, microscopie électronique à balayage (MEB) et en transmission (MET), spectroscopie des rayons X et des électrons Auger, imagerie MET, interprétation des images, définition des conditions de diffraction, obtention des spectres RX, quantification des rayons X obtenus en MET.
MET6104A
 
Tech. de caractérisation des matériaux II 3
Nombre de crédits : 3 (3 - 3 - 3) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Métall. et génie des matériaux
Préalables(s) : MET6103A ou l'équivalent
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : À venir
Description
Approfondissement des principes et des applications des techniques de caractérisation des matériaux. Modes d'observation et d'analyse en microscopie électronique en transmission analytique, théories du contraste, diffraction en illumination parallèle et convergente, technique du faisceau faible et interprétation quantitative des signaux (spectrométries des rayons X et des pertes d'énergie des électrons transmis). Imagerie en contraste Z. Imagerie à haute résolution.
MET6208
 
Énergétique des solutions 4
Nombre de crédits : 4 (3 - 3 - 6) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie chimique
Préalables(s) :
Corequis :
Trimestre :
Période :
Notes :
Responsables(s) : Patrice Chartrand
Description
Rappel des notions de la thermodynamique chimique. Rapport entre les diagrammes d'équilibre et les propriétés thermodynamiques des phases. Calcul des propriétés thermodynamiques à partir des modèles structuraux. Étude des modèles structuraux: d'alliages, de laitiers, de mattes, de solutions aqueuses, de sels fondus, de céramiques, de polymères, avec défauts ponctuels. Ordre à courte et à longue distance. Estimation des propriétés thermodynamiques et des diagrammes de phases de systèmes multicomposants. Calculs informatisés à l'aide des logiciels du système FactSage.
MTR8552
 
Choix de matériaux et de procédés 3
Hiver 2019
Cours de jour
Nombre de crédits : 3 (2 - 3 - 4) Les chiffres indiqués entre parenthèses sous le sigle du cours, par exemple (3 - 2 - 4), constituent le triplet horaire.

Le premier chiffre est le nombre d'heures de cours théorique par semaine (les périodes de cours durent 50 minutes).
Le second chiffre est le nombre d'heures de travaux dirigés (exercices) ou laboratoire, par semaine.
(Note : certains cours ont un triplet (3 - 1.5 - 4.5). Dans ce cas, les 1,5 heure par semaine sont des laboratoires qui durent 3 heures mais qui ont lieu toutes les deux semaines. À Polytechnique, on parle alors de laboratoires bi-hebdomadaires).
Le troisième chiffre est un nombre d'heures estimé que l'étudiant doit investir de façon personnelle par semaine pour réussir son cours.
Département : Génie mécanique
Préalables(s) : MEC1420, et MTR2000 ou MTR1035 et 70 CR
Corequis :
Trimestre : Hiver 2019
Période :
Notes :
Responsables(s) : Sylvain Turenne
Description
Place du choix des matériaux et des procédés dans la méthodologie de conception. Classes de matériaux (métaux, polymères, composites, céramiques) et leurs propriétés (thermique, mécanique, physique, corrosion, usure). Influence du facteur de forme des sections sur la sélection des matériaux. Caractéristiques des produits conditionnant le choix des procédés de fabrication. Considérations économiques et environnementales reliées au choix des matériaux et procédés. Études de cas dans différents domaines : transports, structures, équipements sportifs, applications biomédicales, outillages.