
Vertex Colouring 
 

Complement to Chapter 7, “The Case of the Hooded Man” 
and Chapter 9, “The Sudoku Apprentice” 

 

 
In 1852, a young Englishman, Francis Guthrie, wondered if it were always possible to 
colour a map using four colours, while respecting the condition that two neighbouring 
countries could not be of the same colour. It wasn’t until 1976 that two American 
researchers, Kenneth Appel and Wolfgang Haken, from the University of Illinois, 
managed to answer this question in the affirmative. More than a century went by between 
when the problem was set out and when it was solved, even though it appears to be very 
simple. Throughout those years, researchers of course did tackle the question, and many 
attempts gave rise to new mathematical developments, as well as to the problem being 
formulated in terms of graphs. The map to colour was replaced by a graph, each country 
being represented by a vertex and two neighbouring countries being linked by an edge.  

Definition 
Colouring the vertices in graph G means assigning colours to the vertices such that 
each edge in G has ends of two different colours. We are also usually seeking to 
determine a colouring that uses as few colours as possible. The smallest number of 
colours needed to colour the vertices in a graph G is called the “chromatic number” of 
G and is noted as (G).  

 
We can also colour the edges while making sure that edges touching a given vertex are 
not of the same colour. This is what we defined earlier, in the document dealing with 
matchings.  

Definition 
Colouring the edges in a graph G means assigning colours to the edges such that the 
edges which have an end in common with one another are of different colours. We 
are also generally seeking to determine a colouring that uses as few colours as 
possible. The smallest number of colours needed to colour the edges of a graph G is 
called the “chromatic index” of G and is noted as q(G). 

Let’s once again take the edge colouring example we saw in an earlier document. We 
need to carry out five tasks, T1, T2, T3, T4 and T5, with each of the tasks taking one day to 
complete. Tasks T1 and T2 must be performed by employee E1, tasks T3 and T4 by 
employee E2 and task T5 by employee E3. Tasks T1 and T3 require machine M1, tasks T2 
and T4 need machine M2 and task T5 machine M3. Knowing that each employee can only 
carry out one task at a time and that each machine can only be used by one employee at a 
time, how many days are needed at minimum to perform the five tasks? 

This problem is equivalent to colouring the edges of the graph below using the minimum 
number of colours, such that all the edges that touch one another are of different colours. 



Each colour corresponds to one day, and we need two days. For example, we can perform 
tasks T1, T4 et T5 on the first day, and tasks T2 and T3 the second day. 

 

 

Let’s consider the same problem now, but with an additional constraint. Tasks T2, T3 and 
T5 monopolize the company’s only remote-control machine, and it cannot help with the 
performance of two tasks simultaneously. The minimum number of days needed for 
carrying out the five tasks can be determined by colouring the vertices in the graph below 
with a minimum number of colours, such that no edges have two ends of the same colour. 
Once again, each colour corresponds to one day. So we need three days. For example, we 
can perform tasks T1, T4 and T5 the first day, task T2 the second day and task T3 the third 
day. 
 

 

In fact, many concrete problems can boil down to seeking to partition a set of objects into 
subsets that feature only elements that are compatible two by two. For instance, 
determining a school schedule means partitioning time into periods during which only 
courses that can take place simultaneously are given. We can model this type of problem 
in terms of colouring the vertices of a graph: the vertices are the objects being partitioned 
and the edges represent the incompatibilities between these objects. For the school 
schedule example, the vertices are the courses that need to be placed in the timetable, and 
we link two courses with an edge if they can’t be given simultaneously (because they are 
taught by the same teacher, are given to the same students, or must be taught in the same 
room). 

The problem of colouring the edges in a graph was addressed in an earlier document. 
Here, we are interested in determining the chromatic number. Note that when considering 
the line graph L(G) of a graph G, we know of course that colouring the edges of G is 
equivalent to colouring the vertices of L(G). The chromatic index of G is therefore equal 
to the chromatic number of its line graph, which can be noted as: 

q(G) = (L(G)) 

 



Definition 
A “clique” in a graph is a set of vertices all related two by two. The size of the biggest 
clique in a graph G is noted as (G). 

 
Given that the vertices in a clique must all be of different colours, we deduce that the 
chromatic number (G) of G cannot be less than (G). It may, however, be strictly 
greater than (G) , such as in the case below, with the pentagon example. We need 
(G)=3 colours to colour its vertices, while (G)=2.  

 

As another example, we can provide the graph Manori draws to determine the guilty 
party in the robbery of Mrs. Rossier’s grocery store. 

 

Manori demonstrated that while the graph contains no cliques with four vertices, its 
chromatic number is greater than 3. We can only colour it in three colours if we remove 
vertex I. 

As a reminder, Vizing showed that the chromatic index is always at most equal to the 
highest degree + 1, or q(G)  (G)+1. We can make the following observations: 
 A set of edges in G that all have one end in common corresponds to a clique in its 

line graph L(G), which shows that (L(G)) ≥ (G);  
 If L(G) is not a triangle, a clique in L(G) corresponds to a set of edges all touching a 

given vertex in G, which shows that (G) ≥  (L(G)). 



In sum, if L(G) is not a triangle, we get (G)=(L(G)). If L(G) is a triangle, as we 
already noted in another document, and as illustrated once again below, it is possible that 
G is also a triangle, in which case 2=(G) < (L(G))=3.  

 

Given that q(G)=(L(G)), the result demonstrated by Vizing can be rewritten as follows: 

(L(G))  (L(G))+1. 

By this reasoning laid out above, this result is only true if L(G) is not a triangle. It is also 
true if L(G) is a triangle because in that case, 3= (L(G)) <  (L(G))+1=4. 
 
In other words, we have just seen that the chromatic number of a line graph is never 
much higher than the size of its biggest clique. This result, however, is no longer 
necessarily valid for all graphs. It has been demonstrated that the difference between 
(G) and (G) can be as big as you can imagine. Here is an example in which  
(G) = (G)+2. This graph was built as follows. We first considered two pentagons, one 
made up of vertices a, b, c, d and e, and the other of vertices A, B, C, D and E. We then 
added an edge between all the vertices in the first pentagon and those in the second 
pentagon. 

 

 
Given that we need three colours to colour a pentagon, we need six colours to colour this 
graph. Also, the biggest clique in a pentagon contains two vertices, which means that the 
biggest clique in the graph as a whole is of size 4. In sum, we get (G)=6=4+2=(G)+2. 

The problem of determining the chromatic number of a graph G is difficult to solve. The 
best algorithms known to date do not allow us to determine the chromatic number of 
graphs with more than 100 vertices. These problems can, however, be easier for certain 



graph families. For example, for a bipartite graph that includes at least one edge, we 
know that (G)=2 because we can assign one colour to one of the parts of the V partition, 
and another colour to the second part. We also saw that it’s easy to colour an interval 
graph. For other large graphs, we have no choice but to rely on heuristics, which provide 
solutions of a reasonable quality in a reasonable time. Here, let’s look at a few of these 
heuristics. 
 

Constructive methods for colouring the vertices of a graph travel over the vertices 
sequentially, assigning each vertex the smallest possible colour (the colours are 
numbered). The quality of the solution thus obtained depends largely on the order in 
which the vertices are considered. This order can be chosen to start with, or built 
dynamically. It is important to note that all graphs possess a vertex order based on which 
the constructive method produces a colouring using the minimum number of colours. To 
see this, we simply need o consider the colouring of graph G in (G) colours and order 
the vertices of G by first taking the vertices of colour 1, then those of colour 2, and so 
forth.  

 
Property   

A constructive method never uses more than (G)+1 colours. 
Proof  

When we colour a vertex, a maximum of (G) colours can already appear in its 
neighbourhood.  � 

It is interesting to note that a sequential colouring algorithm can be in error on the 
following graph, which only contains four vertices. 

 

If we colour this graph in the order a, d, b, c, we will assign colour 1 to a and d, colour 2 
to b and colour 3 to c. The graph could, however, easily be coloured using only two 
colours (colour 1 for a and c and colour 2 for b and d). This graph is noted P4 for “path on 
4 vertices.”  

Chvátal demonstrated that if a graph contains no quadruplet of vertices a, b, c and d with 
a P4 structure (meaning that a is linked to b but not to c and d, b is linked also to c but not 
to d, and c is also linked to d), then the constructive sequential algorithm will produce an 
optimal colouring in (G) colours, regardless of the order used. 

The most common constructive colouring methods can be described as follows. First, 
among the constructive methods based on static orders, the best known are the following: 

RANDOM 
The vertices are sorted in a random order. 

LF (Largest First) 
The vertices are sorted by degree in non-increasing order. 



SL (Smallest Last) 
The order v1, v2, …, v|V| of the vertices is such that vi is of the smallest degree in 
the graph containing only vertices v1, v2, …, vi.  

 

Illustration 

  
Colouring with the LF algorithm 

 

 
Colouring with the SL algorithm 

Given any partial colouring of G, let’s define the degree of saturation DSAT(v) of a 
vertex v in G as the number of different colours already assigned to the neighbouring 
vertices of v. In a subset W of vertices in G, DEGW(v) measures the number of w vertices 
in W that are neighbours of v. In what follows, subset A of vertices corresponds to the set 
of vertices that are not yet coloured. Among the constructive methods based on dynamic 
orders, the most frequently used is this one: 

DSATUR  
The order of vertices is built by choosing, at every step, a vertex v of A, which 
maximizes DSAT(v). If two vertices, v and w, are of the same degree of 
saturation, v precedes w as long as DEGA(v)≥DEGA(w). 
 

Illustration 

 
Colouring with the DSATUR algorithm 

 
The table below provides a few indications on the performances of these four heuristics 
when we apply them to randomly generated graphs. We note as Gn,d a random graph 
made up of n vertices and in which each edge has a d probability of existing, 
independently of the other edges. The probability d is called the density of the graph. The 
results of the table below are averages calculated from ten random graphs. For each 



heuristic, we provide the average number of colours used to colour the graph Gn,d in 
question. 

 

n d RANDOM LF SL DSATUR 

 
100 

 

0.4 
0.5 
0.6 

17.60
21.35 
26.20

16.10
20.15 
24.50

16.65
20.50 
24.85

14.70 
18.45 
22.60 

 
300 

0.4 
0.5 
0.6 

39.00
48.20 
61.00

37.10
46.00 
58.20

38.10
46.80 
58.90

34.30 
43.30 
53.70 

 
500 

0.4 
0.5 
0.6 

57.20
72.40 
91.40

56.00
69.20 
87.60

56.80
71.80 
89.60

51.00 
65.00 
82.80 

 
1000 

0.4 
0.5 
0.6 

99.50
126.50 
160.50

96.50
122.00 
155.00

97.00
124.50 
157.00

92.00 
116.00 
146.50 

For random graphs with up to 1,000 vertices, all these methods have calculation times of 
a second or two, or even less. Note that much more efficient algorithms exist, but they are 
heavier to implement. For instance, for a 1,000-vertex graph with a density of 0.5, the 
results of the table above are between 116 and 127 colours, while the best algorithms 
known to date manage to determine colourings of these same graphs with 82 colours (but 
with several hours of calculation time). 

We conclude this document by coming back to Manori once again, who used the 
colouring of vertices in a graph to find the solution for the first Sudoku puzzle he was 
given by young Lei. In fact, all Sudoku problems come down to colour an 81-vertex 
graph in nine colours with a few vertices that already have colours assigned. This graph 
contains one vertex per box and two vertices are linked by an edge if they correspond 
with boxes that are found on the same line, in the same column, or in the same 3 x 3 
square in the grid.  

For the grid given to him by Lei, Manori only considers the six specific boxes 
represented below. 
 

     5 7  6 
 3  1  A B 9 F 
       5 C
 1 9 5  E  4 D
     3   7 
         
     6    
     7   1 
        3 

 

 

Manori notices that these six boxes can only contain the numbers 2, 4 and 8. So he needs 
to colour the graph using three colours, one for 2, another for 4 and the third for 8. He 
then notes that the only possible solution assigns one colour to A and C, a second colour 
to B and D, and finally a third colour to E and F. Then, it’s simply a matter of observing 
that boxes D and E cannot be filled with the number 4 to conclude that the colour 
representing the number 4 can only be assigned to boxes A and C. 


