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By formulating Maxwell’s equations in perturbation-matched curvilinear coordinates, we have derived rig-
orous perturbation theory(PT) and coupled-mode theory expansions that are applicable in the case of generic
nonuniform dielectric profile perturbations in high-index-contrast waveguides, including photonic band gap
fibers, and two-dimensional(2D) and 3D waveguides. PT is particularly useful in the optimization stage of a
component design process where fast evaluation of an optimized property with changing controlling variables
is crucial. We demonstrate our method by studying radiation scattering due to common geometric variations in
planar 2D photonic crystals waveguides.
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I. INTRODUCTION

Standard perturbation theory(PT) and coupled-mode
theory (CMT) formulations are known to fail or exhibit a
very slow convergence[1–6] when applied to the analysis of
geometrical variations in the structure of high-index-contrast
waveguides. In (CMT) framework applied to uniform
waveguides(the waveguide profile remains unchanged along
the direction of propagation), eigenvalues of the matrix of
coupling elements approximate the values of the propagation
constants of a uniform waveguide of perturbed cross section.
When a large enough number of modes are included CMT, in
principle, should converge to an exact solution for perturba-
tions of any strength. Perturbation theory is a numerically
more efficient method than coupled-mode theory, but it is
mostly applicable to the analysis of small perturbations. For
stronger perturbations, higher-order perturbation corrections
must be included, converging, in the limit of higher orders,
to an exact solution. To analyze nonuniform waveguides
(waveguide profile is changing along the direction of propa-
gation) within coupled-mode and perturbation theory frame-
works one propagates the modal coefficients along the length
of a waveguide using a first-order differential equation in-
volving a matrix of coupling elements. Both uniform and
nonuniform coupled-mode and perturbation theory expan-
sions rely on the knowledge of correct coupling elements.

The conventional approach to the evaluation of the cou-
pling elements proceeds by expansion of the solution for the
fields in a perturbed waveguide into the modes of an unper-
turbed system, then computes a correction to the Hamil-
tonian of a problem due to the perturbation in question, and,
finally, computes the required coupling elements. Unfortu-
nately, this approach encounters difficulties when applied to
the problem of finding perturbed electromagnetic modes in
waveguides with shifted high-index-contrast dielectric
boundaries. In particular, for a uniform geometric perturba-
tion of a fiber profile with abrupt high-index-contrast dielec-
tric interfaces, expansion of the perturbed modes into an in-
creasing number of modes of an unperturbed system does not

converge to a correct solution when the standard form of the
coupling elements[7,8] is used. The mathematical reasons
for such a failure are still not completely understood but
probably lie either in theincompletenessof the basis of
eigenmodes of an unperturbed waveguide in the domain of
the eigenmodes of a perturbed waveguide or in the fact that
the standard mode orthogonality conditions(Sec. IV A) do
not constitute strict norms. We would like to point out that
standard coupled-mode theory can still be used even in the
problem of finding modes of a high-index-contrast wave-
guide with sharp dielectric interfaces. One can calculate such
modes by using as an expansion basis eigenmodes of some
reference waveguide with a “smooth” dielectric profile
(empty metallic waveguide, for example). However, the con-
vergence of such a method with respect to the number of
basis modes is slow(linear). The perturbation formulation
within this approach is also problematic, and even for small
geometric variations of the waveguide profile matrix of the
coupling element has to be recomputed anew. Other methods
developed to deal with shifting metallic boundaries and di-
electric interfaces originate primarily from the works on me-
tallic waveguides and microwave circuits[9–14]. Dealing
with nonuniform waveguides, these formulations usually em-
ploy an expansion basis of the “instantaneous modes.” Such
modes have to be recalculated at each different waveguide
cross section, leading to potentially computationally de-
manding propagation schemes. When high-index waveguides
exhibit only cylindrical features the multipole method and its
derivatives could be used to analyze the eigenmodes and
scattering in such waveguides[15–19]; however, these meth-
ods do not allow a perturbative formulation. Finally, time
domain codes[20] are usually difficult to apply to the analy-
sis of small variation and imperfections as one has to use
meshes fine enough to resolve the imperfections, and model
large propagation distances over which the effects of small
variations become discernable. Similarly, frequency domain
and mode matching methods[21–25] require large supercells
and fine resolution to capture the impact of small perturba-
tions.

In this paper we introduce a method of evaluating the
coupling elements which is valid for any smooth geometrical
waveguide profile variations and high-index contrast using
the eigenmodes of an unperturbed waveguide(to which we*Electronic address: maksim.skorobogatiy@polymtl.ca
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refer as a reference waveguide) as an expansion basis. This
paper presents a generalization of an earlier method devel-
oped to analyze imperfections in high-index-contrast fibers
[1,30]. The main idea of our method is to introduce a coor-
dinate transformation that maps a dielectric profile of a ref-
erence waveguide(whose eigenmodes are assumed to be
known) onto a dielectric profile of a perturbed waveguide.
Such mappings can be either defined analytically or com-
puted numerically. Transforming Maxwell’s equations into a
curvilinear system where the dielectric profile is unperturbed
we can use the eigenmodes of a reference waveguide as an
expansion basis. These modes will be now coupled due to
the curvature of space, which is, in turn, proportional to the
strength of the perturbation in question. Another interpreta-
tion of the same methodology is to use the eigenmodes of a
reference waveguide and to stretch them using a coordinate
mapping in such a way as to make the discontinuities in their
fields to coincide with the position of the perturbed dielectric
interfaces and to finally use such stretched, perturbation fit-
ted modes as an expansion basis. In further discussions we
formulate geometrical waveguide profile variations in terms
of a smooth mapping of an unperturbed dielectric profile
onto a perturbed one. Given a perturbed dielectric profile
esx,y,zd in a Euclidian system of coordinatessx,y,zd (where
z is a general direction of propagation) we define a mapping
(xsq1,q2,sd ,ysq1,q2,sd ,zsq1,q2,sd) such thatesq1,q2,sd cor-
responds to a dielectric profile of a reference waveguide in a
curvilinear coordinate system associated withsq1,q2,sd
(wheres is a direction of propagation). We then perform a
coordinate transformation from a Euclidian coordinate sys-
tem sx,y,zd into a corresponding curvilinear coordinate sys-
tem sq1,q2,sd by rewriting Maxwell’s equations in such a
curvilinear coordinate system. Finally, as the dielectric pro-
file in a coordinate systemsq1,q2,sd is that of a reference
waveguide, we can use the basis set of its eigenmodes in
sq1,q2,sd coordinates to calculate coupling matrix elements
due to the geometrical variations of a waveguide profile.

Our paper is organized as following. We first describe
some typical geometrical variations of two-dimensional(2D)
waveguide profiles. Next, we discuss the properties of ge-
neric curvilinear coordinate transformations and formulate
Maxwell’s equations in a curvilinear coordinate system. We
apply this formulation to develop the coupled-mode and per-
turbation theories using eigenstates of an unperturbed wave-
guide as an expansion basis. We conclude with analysis of
several typical variations in 2D waveguides.

II. GEOMETRICAL VARIATIONS OF WAVEGUIDE
PROFILES

We start by considering several common geometrical
variations of waveguide profiles that can be either deliber-
ately designed or arise during manufacturing as imperfec-
tions. Letsx,y,zd correspond to Euclidian coordinate system.
In Fig. 1(a) an ideal 2D photonic crystal waveguide is pre-
sented. In what follows the operation frequency and all the
waveguide dimensions are chosen for a reference waveguide
to be single moded, with forward and backward propagating
fundamental modes confined by the band gap of the reflector.

In Fig. 1(b) the photonic crystal taper with “unzipping” mir-
ror is presented. When the core size is increased sufficiently,
the fundamental mode becomes purely guided by the high
index of the remaining corrugated waveguide. In Fig. 1(c) a
waveguide with arbitrarily changing core size along the di-
rection of propagation is presented. When such variations are
small and random one can consider them to be a model of
roughness.

We now define a dielectric profile mapping of a reference
photonic crystal waveguide, Fig. 1(a), onto a waveguide with
a changing core size, Fig. 1(c), by using the mappingx=q1
+ fxsq1dfzssd ,y=q2,z=s, where auxiliary functionsfxsq1d and
fzssd are chosen to be as in Fig. 2. As seen from this figure,
in each of the unit cells along the waveguide length the func-
tions fxsq1d and fzssd are defined in such a way as to translate
the reflector rods along thex direction by an appropriate
value of the core size change, while leaving the smaller rods

FIG. 1. (a) Dielectric profile of a reference 2D photonic crystal
waveguide as formed in a square array of dielectric poles in air by
a linear sequence of somewhat smaller dielectric poles.(b) Linear
taper in a photonic crystal with “unzipping” photonic mirror.(c)
Stochastic variations in a waveguide core size along the direction of
propagation.

FIG. 2. Auxiliary functions for the coordinate mapping of a
reference 2D photonic crystal waveguide[Fig. 1(a)] onto a wave-
guide of a changing core size[Fig. 1(c)].
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of a defect waveguide intact. These auxiliary functions and
their first derivatives have to be continuous everywhere. Al-
though only the variations in the waveguide core size are
considered in this paper, the CMT derived in this article is
general. For other variations the corresponding coordinate
mappings can be computed analytically or numerically from
the original and final positions of the dielectric interfaces.

III. CURVILINEAR COORDINATE SYSTEMS

Following [26,27], we first introduce general properties of
the curvilinear coordinate transformations. Letsx1,x2,x3d be
the coordinates in a Euclidian coordinate system. We intro-
duce a smooth mapping(requiring continuity of the func-
tions and all their partial derivatives in the computation do-
main) into a new coordinate system with coordinates
sq1,q2,q3d as (x1sq1,q2,q3d ,x2sq1,q2,q3d ,x3sq1,q2,q3d). A
new coordinate system can be characterized by its covariant
basis vectorsaW i defined in the original Euclidian system as
aW i =s]x1/]qi ,]x2/]qi ,]x3/]qid. Now, define the reciprocal
(contravariant) vector aW i as aW i =s1/ÎgdaW j 3aWk, sk, jdÞ i,
where the metricgij is defined asgij =s]xk/]qids]xk/]qjd, and
g=detsgijd. VectorsaW i and their reciprocalaW i satisfy the or-
thogonality conditionsaW i ·aW j =di,j, aW i ·aW j =gij , and aW i ·aW j =gij ,
wheregij is an inverse of the metricgij . In general, a vector

may be represented by its covariant componentsEW =eiaW
i or

by its contravariant componentsEW =eiaW i. These components
might have unusual dimensions because the underlying vec-
tors aW i and aW i are not properly normalized in a Euclidian
coordinate system. Components having the usual dimensions

are defined byEi =ei /Îgii , Ei =ei /Îgii , andEW =eiaW
i =EiiW

i and

EW =eiaW i =EiiWi, whereiWi and iWi are unitary vectors. Normalized
covariant and contravariant components are connected by
Ei =GijE

j and Ei =GijEj where Gij =sÎgii /gjjdgij and Gij

=sÎgii /g
jjdgij . For orthogonal coordinate systems the metric

matrixes are diagonal and for the regular orthogonal and po-
lar coordinate systems they areg0xx=1, g0yy=1, g0zz=1, g0

=1 andg0rr=1, g0uu=1/r2, g0zz=1, g0=r2, correspondingly.

IV. COUPLED-MODE THEORY FOR MAXWELL’S
EQUATIONS IN CURVILINEAR COORDINATES

In the following, we summarize coupled-mode theory for
Maxwell’s equations in curvilinear coordinates to treat radia-
tion propagation in generic nonuniform waveguides. The
Hamiltonian formulation of Maxwell’s equations in regular
Euclidian coordinates is detailed in[2,3,13], while the
Hamiltonian formulation and coupled-mode theory in curvi-
linear perturbation-matched coordinates for the case of uni-
form and nonuniform fibers of arbitrary cross sections is de-
tailed in [3,4,30].

The form of Maxwell’s equations in curvilinear coordi-
nates can be found in a variety of references[26–29]. As-
suming the standard time dependence of the electromagnetic
fields Fsq1,q2,q3,td=Fsq1,q2,q3dexps−ivtd [F=sEq1

/Îg11;
Eq2

/Îg22; Eq3
/Îg33; Hq1

/Îg11; Hq2
/Îg22; Hq3

/Îg33d de-
notes a 6 component column vector of the electromagnetic
fields] these expressions are compactly presented in terms of

the normalized covariant components of the fields, and in the
absence of free electric currents they are

− ivesq1,q2,q3dDij Ej

Îgjj
= eijk

]
Hk

Îgkk

]qj ,

ivmsq1,q2,q3dDij Hj

Îgjj
= eijk

]
Ek

Îgkk

]qj , s1d

whereDij =Îggij andeijk is a Levi-Cività symbol.

A. Modal orthogonality relations and normalization

In the following we assume that reference waveguide is
either uniform(planar waveguide, fiber) or strictly periodic
(photonic crystal waveguide, fiber grating) along the direc-
tion of propagationq3=s. This implies that bothe0 and m0
(marking parameters related to reference waveguide with a
subscript zero) either do not depend ons or they are periodic
functions ofs. We assume that eigenmodes and eigenvalues
of a reference waveguide are found in a coordinate system
with a diagonal(non-necessarily unitary) space metric corre-
sponding to orthogonal coordinate system. Several orthogo-
nality relations between the eigen modes of a reference
waveguide are possible.

A norm operatorB̂ and its matrix representation[13] can
be introduced as

B̂ =1
0 0 0 0 1 0

0 0 0 − 1 0 0

0 0 0 0 0 0

0 − 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

2 , s2d

relating the transverse components of the eigenfields. De-
pending upon the symmetry of a reference waveguide several
orthogonality relations are possible.

If reference waveguide profile is uniform alongs, then the
eigenfields have an additional symmetryFsq1,q2,sd
=Fbsq1,q2dexpsibsd.

(i) If e0 andm0 are strictly real, we introduce Dirac nota-
tion asubl=Fbsq1,q2d andkbu=Fb

+sq1,q2d and a product op-

erator kbiuÔub jl=ecrosdq1dq2Fbi

+ sq1,q2dOFb j
sq1,q2d, where

O is a 636 operator matrix and integration is performed
over the waveguide cross section. Then, for any two eigen-
modes labeled by their propagation constantsbi, b j the

eigenmodes can be normalized askbiuB̂ub jl=dbi
* ,b j

hb j
and

uhb j
u=1.

(ii ) If e0 or m0 has a complex part, we introduce Dirac
notation asubl=Fbsq1,q2d and kbu=Fbsq1,q2d, (no complex

conjugation) and a product operator kbiuÔub jl
=ecrosdq1dq2Fbi

T sq1,q2dOFb j
sq1,q2d, where integration is

MODELING THE IMPACT OF IMPERFECTIONS IN… PHYSICAL REVIEW E 70, 046609(2004)

046609-3



performed over the waveguide cross section. Then for any
two eigenmodes labeled by their propagation constantsbi, b j

the eigenmodes can be normalized askbiuB̂ub jl=dbi,b j
hb j

and
uhb j

u=1.
If unperturbed waveguide profile is periodic alongs with

period L, then according to the Bloch-Floquet theorem the
eigenfields still retain a symmetry Fsq1,q2,sd
=Fbsq1,q2,sdexpsibsd, whereFbsq1,q2,sd=Fbsq1,q2,s+Ld.
If e0 andm0 are strictly real, we introduce Dirac notation as
ubl=Fbsq1,q2,sd and kbu=Fb

+sq1,q2,sd, as well as a product

operatorkbiuÔub jl=ecelldq1dq2dsFbi

+ sq1,q2,sdOFb j
sq1,q2,sd,

where O is a 636 operator matrix and integration is per-
formed over the whole unit cell of a periodic waveguide.
Then for any two eigenmodes labeled by their propagation
constantsbi, b j the eigenmodes can be normalized as

kbiuB̂ub jl=dbi
* ,b j

hb j
and ub ju=1. Moreover, a corollary of the

Bloch-Floquet theorem states that the eigenmodes atb and
b+2pl /L are equivalent for any integerl, and thus ub
+2pl /Ll=exps−2pil /Lzdubl. This implies that it suffices to
choose all the eigenvaluesb in the first Brillouin zone
ResbdP s−p /L ,p /Lg, and for such modes the definition
of the norm can be furthermore relaxed to

be kbiuB̂ub jl=ecelldq1dq2dsFbi

+ sq1,q2,sdBFb j
sq1,q2,sd

=Lecrosdq1dq2Fbi

+ sq1,q2,sdBFb j
sq1,q2,sd, where the integral

over a reference waveguide cross section is invariant for any
cross section(any s) in the first Brilloun zone. Thus, the

definition of the norm in the case of reale0 andm0 for peri-
odic and uniform waveguides can be chosen to be the same.

B. Expansion basis

We now construct an expansion basis to treat radiation
propagation in a perturbed waveguide using the eigenfields
of a reference waveguide in the perturbation matched curvi-
linear coordinate system. Equivalently, in the Euclidian co-
ordinate system associated with a perturbed waveguide we
construct an expansion basis from the eigenfields of an un-
perturbed waveguide by spatially stretching them in such a
way as to match the regions of discontinuity in their field
components with the position of the perturbed dielectric in-
terfaces. Finally, we find expansion coefficients by satisfying
Maxwell’s equations. In the following, we first define an
expansion basis and then demonstrate how perturbation
theory and a coupled mode theory can be formulated in such
a basis.

Let sx,y,zd to define a Euclidian coordinate system asso-
ciated with a perturbed waveguide andsq1,q2,sd be a coor-
dinate system corresponding to an unperturbed waveguide,
where s is a direction of propagation, with corresponding
smooth coordinate transformation relating the two coordinate
systems being(xsq1,q2,sd ,ysq1,q2,sd ,zsq1,q2,sd). Using the
transverse eigenfields of a reference waveguide expressed in
the coordinatessq1,q2,sd we form an expansion basis in the
Euclidian coordinate systemsx,y,zd as follows:

uCbl =1
Eq1

0 sq1sx,y,zd,q2sx,y,zd,ssx,y,zdd

Îg0q1q1
iWq1

+
Eq2

0 sq1sx,y,zd,q2sx,y,zd,ssx,y,zdd

Îg0q2q2
iWq2

Hq1
0 sq1sx,y,zd,q2sx,y,zd,ssx,y,zdd

Îg0q1q1
iWq1

+
Hq2

0 sq1sx,y,zd,q2sx,y,zd,ssx,y,zdd

Îg0q2q2
iWq22

b

. s3d

There are several important properties that basis vector
fields (3) possess. First, if the coordinate transformation is

orthogonalsiWqh1,2,3j= iWqh1,2,3jd, then one can show that any two
basis fields of Eq.(3) are orthogonal in the sense of the
orthogonality condition discussed in Sec. IV A. Moreover, in
the case of nonorthogonal smooth transformations, basis
fields (3) will be almost orthogonal with an amount of non-
orthogonality proportional to the strength of perturbation.
Second, the regions of discontinuity in the field components
of the basis fields(3), by construction, coincide with the
positions of the perturbed dielectric interfaces.

C. Coupled-mode theory

Maxwell’s equations in curvilinear coordinates(1), while
seemingly complicated, involve an unperturbed dielectric
profile esq1,q2,sd. We look for a solution of Maxwell’s equa-
tions (1) in terms of the basis fields(3) which in the
sq1,q2,sd coordinate system are the eigenfields of a reference
waveguide entering with corresponding coefficientsCbssd
coordinates varying along the direction of propagation. Thus,
in the covariant coordinates for both uniform and periodic
waveguides we look for a solution in the form
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1
Eq1sq1,q2,sd

Îgq1q1

Eq2sq1,q2,sd

Îgq2q2

Hq1sq1,q2,sd

Îgq1q1

Hq2sq1,q2,sd

Îgq2q2

2 = o
b j

Cb jssd1
Eq1

0 sq1,q2,sd

Îg0q1q1

Eq2
0 sq1,q2,sd

Îg0q2q2

Hq1
0 sq1,q2,sd

Îg0q1q1

Hq2
0 sq1,q2,sd

Îg0q2q2

2
b j

. s4d

Note that for a uniform reference waveguide, the expansion
fields (3) are functions ofsq1,q2d only, and for both uniform
and periodic reference waveguides basis fields are stripped of

the phase factor expsibzd. Substituting expansion(4) into Eq.
(1), expressings components of the fields through the trans-
verse components, using the orthogonality relations of Sec.
IV A, and manipulating the resultant expressions we arrive at
the following equation:

B
]CW ssd

]s
= ifBB0 + DMssdgCW ssd, s5d

whereBbi,b j
=kbiuB̂ub jl is a constant normalization matrix,B0

is a diagonal matrix of eigenvalues of an unperturbed refer-
ence waveguide, andDMssd is a matrix of coupling elements
given by

DMbi,b j
ssd = vE

cros

dq1dq21
Eq1

0 sq1,q2,sd

Îg0q1q1

Eq2
0 sq2,q2,sd

Îg0q2q2

Es
0sq1,q2,sd
Îg0ss

Hq1
0 sq1,q2,sd

Îg0q1q1

Hq2
0 sq1,q2,sd

Îg0q2q2

Hs
0sq1,q2,sd
Îg0ss

2
bi

†,T

1
deq1q1 deq1q2 deq1s 0 0 0

deq2q1 deq2q2 deq2s 0 0 0

desq1 desq2 dess 0 0 0

0 0 0 dmq1q1 dmq1q2 dmq1s

0 0 0 dmq2q1 dmq2q2 dmq2s

0 0 0 dmsq1 dmsq2 dmss

21
Eq1

0 sq1,q2,sd

Îg0q1q1

Eq2
0 sq2,q2,sd

Îg0q2q2

Es
0sq1,q2,sd
Îg0ss

Hq1
0 sq1,q2,sd

Îg0q1q1

Hq2
0 sq1,q2,sd

Îg0q2q2

Hs
0sq1,q2,sd
Îg0ss

2
b j

,

s6d

where integration is performed over an unperturbed waveguide profile. Complex conjugation of the field on the left of the
matrix of coupling elements can be used whene0 andm0 are real and the reference waveguide is either uniform or periodic.
The unconjugated product can only be used with a uniform reference waveguide while an arbitrary(real or complex) e0 and
m0 as described in Sec. IV A. Assuming that the eigenfields of an unperturbed waveguide were found in a diagonal metric,

nonzero elements of 636 matrix DM̂ssd are

deq1q1 = eDq1q1
− e0D0

q1q1
− e

sDq1sd2

Dss
, dmq1q1 = mDq1q1

− m0D0
q1q1

− m
sDq1sd2

Dss
,

deq1q2 = deq2q1 = eSDq1q2
−

Dq1sDq2s

Dss
D, dmq1q2 = dmq2q1 = mSDq1q2

−
Dq1sDq2s

Dss
D ,

deq1s = desq1 = e0
Dq1sD0

ss

Dss
, dmq1s = dmsq1 = m0

Dq1sD0
ss

Dss
,

deq2q2 = eDq2q2
− e0D0

q2q2
− e

sDq2sd2

Dss
, dmq2q2 = mDq2q2

− m0D0
q2q2

− m
sDq2sd2

Dss
,
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deq2s = desq2 = e0
Dq2sD0

ss

Dss
, dmq2s = dmsq2 = m0

Dq2sD0
ss

Dss
,

dess= e0D0
ssS1 −

e0D0
ss

eDssD, dmss= m0D0
ssS1 −

m0D0
ss

mDssD , s7d

wheree andm describe the profile of a perturbed waveguide
(the casee=e0 and m=m0 corresponds to shifting material
boundaries) andDij =Îggij . Note that the matrix of coupling
elementsDMssd is symmetric or Hermitian depending upon
the choice of normalization. Equation(5) presents a system
of first-order linear coupled differential equations with re-
spect to a vector of expansion coefficientsCbssd. The bound-
ary conditions such as the modal content of an incoming and
an outgoing radiation define a boundary value problem that
can be further solved numerically.

The presented coupled-mode theory describes completely
radiation scattering in arbitrary index-contrast waveguides
with shifting dielectric boundaries and changing dielectric
profile. Moreover, Eq.(5) allows perturbative expansion. As
the metric of a slightly perturbed coordinate system is only
slightly different from the metric of an unperturbed coordi-
nate system, that will naturally introduce a small parameter
for small geometrical perturbations of waveguide profiles.
For application of this theory to analysis of variations in
high-index-contrast fibers see[3,4,30].

V. VARIATIONS IN 2D PHOTONIC CRYSTAL
WAVEGUIDES

In further examples we study propagation of TE polarized
radiation(the electric field is directed out of thexz plane) in
a line defect waveguide made of a periodic sequence of high-
index cylinders of radiirg=0.2a embedded in a square lattice
of rx=0.3a dielectric rods of the reflector[13]. The param-
etera defines the periodicity of a photonic crystal waveguide
in the direction of propagation. All the dielectric rods have
index n=3.37. Perfectly conducting boundary conditions
were imposed in thex direction ±8a from the waveguide
center line. The frequencyv=0.2532pc/a is chosen so that
the waveguide formed solely by a sequence of the dielectric
rods of radiirg=0.2a is guiding and is single moded, while a
reference photonic crystal waveguide is also single moded
guiding in the band gap of the reflector. We use asymptoti-
cally exactCAMFR [31] code to compute an expansion basis
constructed of the guided and evanescent eigenmodes of an
unperturbed photonic crystal waveguide defined by the first
unit cell in the Fig. 1(a). A total of four guided modes with
real b’s (where backward and forward modes with the same
absolute values of their propagation constants are counted
ones) and up to 58 evanescent modes with complex propa-
gation constants were used in the expansion basis to study
convergence of the CMT. The advantage of our coupled-
mode theory is the use at all points along the propagation
direction of a single expansion basis precalculated in ad-

vance. This can be of great advantage for computationally
demanding simulations of long structures.

A. Eigenmodes of a perturbed uniform waveguide

We first study convergence of a CMT when perturbed
waveguide remains uniform along the direction of propaga-
tion [Fig. 3(a)]. For such variations, a perturbed waveguide
still exhibits eigenmodes labeled by a new set of propagation
constants. Presented in Fig. 3(b) is convergence of a funda-
mental mode propagation constant for a weaklyd=0.1 and a
strongly d=1.0 perturbed reference waveguide in a CMT
framework. Ford=0.1 (top plot), inclusion of a single for-
ward propagating fundamental mode results in errors of only
several percent, suggesting the validity of a perturbation
theory regime for a variation of this magnitude. Ford=1.0
(bottom plot), the variation is large and more than 30 modes
are needed to reduce the errors to several percent. In both
cases propagation constants calculated by CMT are com-
pared to the propagation constants calculated by the asymp-
totically exactCAMFR code.

B. Scattering from abrupt variations in a waveguide core

We next study convergence of the transmitted and re-
flected powers from an abrupt variation in a waveguide core
size. In Fig. 4(a) a single-cell defect of strengthd=1.0 is
presented. Scattered powers into the forward and backward
propagating fundamental modes as calculated by CMT are
shown in Fig. 4(b). For a strong variation ofd=1.0, 30
modes are needed for convergence, while convergence is
faster than linear when additional modes are added. As in the
case of uniform variations, for small perturbationsd,0.1
scattering coefficients can be calculated accurately with only
a few modes using perturbation theory.

C. Scattering from tapers

In Fig. 5(a) a schematic of a taper between a line defect
waveguide in a square lattice of dielectric rods in air and a
waveguide formed by a 1D sequence of dielectric rods is
presented. To the left and to the right of the taper the photo-
nic crystal is that of a reference waveguide. Many nuances of
transmission of a fundamental mode through such a taper for
TE polarization have been previously studied in the instan-
taneous mode framework[13]. We believe that the method of
instantaneous modes can be more efficient when larger varia-
tions(nonadiabatic tapers) are considered, and therefore con-
vergence with a fixed basis is slow. However, for smaller
variations(adiabatic tapers) convergence with a fixed basis is
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efficient, while it becomes costly to recompute the instanta-
neous expansion basis at different cross sections, thus ren-
dering a method employing a fixed basis to be more efficient
than a method employing instantaneous modes(for a de-
tailed discussion see[9]).

Here we investigate the magnitude of the backscattering
into the backward propagating fundamental mode as a func-
tion of the taper length. In Fig. 5(b) we plot the reflected
power from the “unzipping” taper of strengthd=0.25 atv
=0.2532pc/a as a function of the taper lengthL. The ex-
pected 1/L2 decrease of the reflected power for the large
taper lengths 20,L,100 is clearly observed. It was found
that 16 expansion modes were enough to reduce the error in
the scattering coefficients below 2%.

D. Scattering from random variations in a waveguide core size

We now calculate the strength of backscattering from
small stochastic variations in a waveguide core size. The
computational domain is defined by taking a reference wave-
guide and changing the waveguide core size(shifting the
lower and upper reflector parts) in each unit celli by 2adi,
where 2a is a core size of a reference waveguide[Fig. 6(a)].
The random variabledi is considered to be distributed ac-
cording to the Gaussian distribution with varianced. For
each d=0.0025, 0.005, 0.01, 0.02 andv=0.2532pc/a,
backreflected power from a waveguide with stochastic core
size variations is presented as a function of propagation dis-
tanceL. Eachd curve represents an average over 30 realiza-
tions of stochastic variations[Fig. 6(b)]. First, we observe
that power in the backscattered fundamental mode scales lin-
early with the length of propagationL, defining average scat-

tering losses of 9.4310−5 dB/a, 2.6310−4 dB/a, 1.3
310−3 dB/a, and 4.6310−3 dB/a for the correspondingd’s.
One also observesd2 scaling of losses with perturbation
strength. It was found that six expansion modes were enough
to reduce the errors in the scattering coefficients below 1%
for all d’s.

E. Compensation of geometrical variations by changing
dielectric profile

Finally, we demonstrate how PT expansions can be useful
to design dielectric profiles that compensate for the undes-

FIG. 3. (a) Schematics of a reference waveguide(left) and a
perturbed uniform waveguide(right) of a larger core. Electric en-
ergy distributions in the fundamental modes are presented in the
corresponding first unit cells.(b) Convergence of the fundamental
mode propagation constant for a weaklyd=0.1 and a stronglyd
=1.0 perturbed reference waveguide in a CMT framework.

FIG. 4. (a) Schematics of a reference waveguide(left) and a
single-cell defect in a reference waveguide(right). (b) Convergence
of the transmitted and reflected powers into the forward and back-
ward propagating fundamental modes as calculated by CMT and
d=1.0 perturbation.

FIG. 5. (a) Taper of an “unzipping” reflector around an index
guiding waveguide. To the left and to the right of the taper the
photonic crystal waveguide is infinite and is described by the first
unit cell of the schematic.(b) Reflected power from the taper at
v=0.2532pc/a as a function of taper lengthL. Observe a 1/L2

decrease of the reflected power with taper length.
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ired weak variations in a waveguide geometry. One way of
changing the dielectric constant of an underlying material
could be via an interaction with femtosecond laser radiation.
The material interaction with femtosecond radiation is cur-
rently actively investigated for writing bulk and planar
waveguides in various materials. With such a process the
index change is proportional to the exposure time to the ra-
diation, while spatial resolutionlres is determined by the
laser spot size in focus. Thus, given the spatial resolution
(“spot size”) of the focused laser beam and positioning reso-
lution of a setup we investigate at what spatial points and
with what intensities the laser beam has to be applied to
reduce the effects of undesired variations.

Particularly, in the case of a weak slow variation(taper,
for example), the local propagation constant of a fundamen-
tal modebszd at a pointz along the waveguide can be ap-
proximated by the first-order perturbation correctionbszd
=b0+kb0uDMb0,b0

szdub0l / kb0uB̂ub0l, whereb0 corresponds to
the fundamental mode of a reference waveguide, while

DMb0,b0
szd and B̂ are defined in Sec. IV. As the matrix of

coupling elements(6) Mb0,b0
szd depends simultaneously on

the geometry of variation and underlying dielectric profile,
by modifying such a dielectric profile one can, in principle,
compensate for the effects of undesired variations in wave-
guide geometry. To construct optimization problem we can
define an objective function as follows:

Q =E
0

L

dzubszd − b0u2 =E
0

L

dzU kb0uDMb0,b0
sz,edub0l

kb0uB̂ub0l
U2

.

s8d

By minimizing the objective functionQ via changing the
dielectric profile we force the local propagation constant to
be that of an unperturbed reference waveguide, thus negating
the effect of an undesired taper. We introduce possible
changes in the dielectric profile ase=e0+oicifsx−xi ,z−zid,
wheree0 corresponds to the dielectric profile of a reference
waveguide, while the spot functionfsx−xi ,z−zid is a local-
ized function defining the intensity distribution of a laser
spot focused at a pointsxi ,zid. For a set of focusing points
sxi ,zid defined by the positioning resolution of the device, the
unknown coefficientsci are then chosen to minimize the
value of the objective functionQ. In general, such a formu-
lation leads to a nonlinear optimization problem that can be
approached by a variety of well-established numerical meth-
ods. Finally, the modified dielectric profile is reconstructed
using optimalci’s, and the success of optimization is judged
by the ratio ofQoptimal/Qunoptimized.

In Fig. 7 we present the results of optimization of the
dielectric profile to negate the effects of an undesired taper of
strengthd=−0.25 over the length ofL=20 unit cells. The
waveguide on the left of the taper is assumed to be infinite
and described by the leftmost unit cell of the taper. The spot
function fsx−xi ,z−zid is chosen to be unity defined on a
square of sizelres=2a. It is also assumed that only the high-
index dielectric can be modified,ehigh

modified=f1+asx,zdgehigh.
The focus pointssxi ,zid were chosen to create a square mesh
of nonoverlapping laser spots. The intensities in various

FIG. 6. (a) Schematic of a computational domain to study back-
scattering losses due to waveguide core size variations. Variations
in the core size are assumed to be uncorrelated from one unit cell to
another and distributed according to the Gaussian distribution with
varianced. (b) For eachd, backreflected power from a waveguide
with “roughness” is presented as a function of propagation distance
L. Each d curve represents an average over 30 realizations of
“roughness.”

FIG. 7. Designing dielectric profile to negate the effects of
variations in a waveguide geometry. Presented is an undesired taper
of strengthd=−0.25 over the length of 20 unit cells. The square
mesh corresponds to the nonoverlapping regions where dielectric is
modified, thus modeling the finite resolution and positioning accu-
racy of the index changing tool. The values of the dielectric con-
stant in various square regions were chosen to make the propagation
constant of a perturbed waveguide match closely the propagation
constant of an unperturbed reference waveguide along the whole
length of a taper. Only the material of high refractive index is modi-
fied, ehigh

modified=f1+asx,zdgehigh. The required change in the dielec-
tric constantasx,zd is presented in shades. In general, we observe
that a,d, consistent with the predictions of perturbation theory.
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spots were optimized to reduce the objective function(8).
With such a chosen realistic spot size and positioning scheme
we managed to reduce the objective function by a factor of
10. In Fig. 7 we plot in shades the required change in the
high-index dielectric in each of the focusing points. As ex-
pected, the largest change in the dielectric profile happens in
the region of the largest geometric variation. As a rule, for
slow weak variations we find that the absolute changea in
the dielectric profile needed to compensate for the geometric
variation and the absolute strength of such a geometric varia-
tion d are proportional to each other,a,d, which is consis-
tent with the predictions of perturbation theory.

VI. CONCLUSION

In this work, we presented a general form of the coupled-
mode and perturbation theories to treat geometric variations
of generic waveguide profiles with an arbitrary dielectric in-
dex contrast. Applications to various aspects of light propa-
gation in deformed 2D photonic crystal waveguides were
demonstrated. We conclude that semianalytical CMT and PT
can offer substantial computational advantages over time do-
main and frequency domain methods when analyzing the
impact of small imperfections or weak variations over large
propagation distances.
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