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Modeling the impact of imperfections in high-index-contrast photonic waveguides
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By formulating Maxwell’s equations in perturbation-matched curvilinear coordinates, we have derived rig-
orous perturbation theorfPT) and coupled-mode theory expansions that are applicable in the case of generic
nonuniform dielectric profile perturbations in high-index-contrast waveguides, including photonic band gap
fibers, and two-dimension&D) and 3D waveguides. PT is particularly useful in the optimization stage of a
component design process where fast evaluation of an optimized property with changing controlling variables
is crucial. We demonstrate our method by studying radiation scattering due to common geometric variations in
planar 2D photonic crystals waveguides.

DOI: 10.1103/PhysRevE.70.046609 PACS nunierd2.25—p, 42.70.Qs

[. INTRODUCTION converge to a correct solution when the standard form of the
) coupling element$7,8] is used. The mathematical reasons
Standard perturbation theorgPT) and coupled-mode for such a failure are still not completely understood but
theory (CMT) formulations are known to fail or exhibit @ probably lie either in theincompletenes®f the basis of
very slow convergencgl-6] when applied to the analysis of eigenmodes of an unperturbed waveguide in the domain of
geometrical variations in the structure of high-index-contrasthe eigenmodes of a perturbed waveguide or in the fact that
waveguides. In(CMT) framework applied to uniform the standard mode orthogonality conditiof@ec. IV A) do
waveguidegthe waveguide profile remains unchanged alongnot constitute strict norms. We would like to point out that
the direction of propagation eigenvalues of the matrix of standard coupled-mode theory can still be used even in the
coupling elements approximate the values of the propagatioproblem of finding modes of a high-index-contrast wave-
constants of a uniform waveguide of perturbed cross sectiorguide with sharp dielectric interfaces. One can calculate such
When a large enough number of modes are included CMT, ifinodes by using as an expansion basis eigenmodes of some
principle, should converge to an exact solution for perturbareference waveguide with a “smooth” dielectric profile
tions of any strength. Perturbation theory is a numericall(€Mpty metallic waveguide, for examplédowever, the con-
more efficient method than coupled-mode theory, but it isvergence of such a method with respect to the number of

mostly applicable to the analysis of small perturbations. Fof@SiS modes is slowlinean. The perturbation formulation

stronger perturbations, higher-order perturbation correction?’ithin thjs appro.ach Is also problematic, an_d even for small
must be included, converging, in the limit of higher Orders,geometrlc variations of the waveguide profile matrix of the

. . -~ coupling element has to be recomputed anew. Other methods
to an exact solution. To analyze nonuniform waveguides. o1, 0 to deal with shifting metallic boundaries and di-

(waveguide profile is changing along the direction of Propa-g|actric interfaces originate primarily from the works on me-

gation within coupled-mode and perturbation theory frame—ﬁmiC waveguides and microwave circuif§—14. Dealing

works one propagates the.modal coefficient; along thg lengRNith nonuniform waveguides, these formulations usually em-
of a Wavegwde using a f!rst-order differential equatlon In'ploy an expansion basis of the “instantaneous modes.” Such
volvmgf a matrix Iotjcougllng edlementsk.) Both Enlform and 1 des have to be recalculated at each different waveguide
honuniform coupled-mode and perturbation theory expang;,ss section, leading to potentially computationally de-
sions rely on the knowledge of correct coupling elements. manding propagation schemes. When high-index waveguides

.The conventional approach to th_e evaluation OT the COUsyhibit only cylindrical features the multipole method and its
pling elements proceeds by expansion of the solution for the i atives could be used to analyze the eigenmodes and

fields in a perturbed waveguide into the m_odes of an unpe’frécattering in such waveguidgs5—19; however, these meth-
turbed system, then computes a correction to the Hamil

X e _ ods do not allow a perturbative formulation. Finally, time
tonian of a problem due to.the perturpat|on In question, anddomain code$20] are usually difficult to apply to the analy-
finally, computes the required coupling elements. Unfortu-gis ot smajl variation and imperfections as one has to use
nately, this apprc')ac.h encounters difficulties whe.n applied Qneshes fine enough to resolve the imperfections, and model
the problem of finding perturbed electromagnetic modes i, e hronagation distances over which the effects of small
waveguides with shifted ~high-index-contrast  dielectric, 5 jations hecome discernable. Similarly, frequency domain

poun(?carl;a_ts). In p?.rltlcul_arr], fgr a “If]‘.'f%".“ dgeometnc p%r_tulrba-and mode matching metho@21-23 require large supercells
tion ot a fiber profile with abrupt high-index-contrast dielec- 4 fine resolution to capture the impact of small perturba-
tric interfaces, expansion of the perturbed modes into an in-

creasing number of modes of an unperturbed system does not In.this paper we introduce a method of evaluating the

coupling elements which is valid for any smooth geometrical
waveguide profile variations and high-index contrast using
*Electronic address: maksim.skorobogatiy@polymtl.ca the eigenmodes of an unperturbed wavegtdewhich we
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refer as a reference wavegujdes an expansion basis. This a (w) DiE=28(45.2L)
paper presents a generalization of an earlier method devel-
oped to analyze imperfections in high-index-contrast fibers
[1,30. The main idea of our method is to introduce a coor-
dinate transformation that maps a dielectric profile of a ref-
erence waveguidéwhose eigenmodes are assumed to be
known) onto a dielectric profile of a perturbed waveguide.
Such mappings can be either defined analytically or com-

reference waveguide (rw)

puted numerically. Transforming Maxwell’s equations into a b

curvilinear system where the dielectric profile is unperturbed a) )

we can use the eigenmodes of a reference waveguide as an ) D)= 22 (1+5(2))
expansion basis. These modes will be now coupled due to 6650000000000
the curvature of space, which is, in turn, proportional to the i....i::..:‘.:::
strength of the perturbation in question. Another interpreta- 10000 080000900

tion of the same methodology is to use the eigenmodes of a 1000 °EEZ 8000000 ; D(z)
reference waveguide and to stretch them using a coordinate E : .E.::::::
mapping in such a way as to make the discontinuities in their E... :o:::::::o
fields to coincide with the position of the perturbed dielectric i ne , e
interfaces and to finally use such stretched, perturbation fit- xl

ted modes as an expansion basis. In further discussions we C)

formulate geometrical waveguide profile variations in terms

of a smooth mapping of an unperturbed dielectric profile FIG. 1.(a Dielectric profile of a reference 2D photonic crystal
onto a perturbed one. Given a perturbed dielectric profil@vaveguide as formed in a square array of dielectric poles in air by
€(x,y,2) in a Euclidian system of coordinatés,y,z) (where 2 Ilnea_lr sequence of somewh_at Emal_ler _dle”Iectrlc p(_QtasI__lnear

zis a general direction of propagatiowe define a mapping '@P€r in a photonic crystal with *unzipping” photonic mirrgc)
(x(ql,qz,s) ,y(ql,qz,s) ,z(ql,qz,s)) such thate(ql,qz,s) COr- Stochastic variations in a waveguide core size along the direction of

responds to a dielectric profile of a reference waveguide in gropagatlon.

curvilinear coordinate system associated wilf',o,S) |y Fig. 1(b) the photonic crystal taper with “unzipping” mir-
(wheres is a direction of propagatignWe then perform a oy is presented. When the core size is increased sufficiently,
coordinate transformation from a Euclidian coordinate systhe fundamental mode becomes purely guided by the high
tem(x,y,2) into a corresponding curvilinear coordinate sys-jndex of the remaining corrugated waveguide. In Fig) B
tem (g*,q%,9) by rewriting Maxwell's equations in such a waveguide with arbitrarily changing core size along the di-
curvilinear coordinate system. Finally, as the dielectric prorection of propagation is presented. When such variations are
file in a coordinate systerfg*,g?,s) is that of a reference small and random one can consider them to be a model of
waveguide, we can use the basis set of its eigenmodes ughness.
(g*,¢?,s) coordinates to calculate coupling matrix elements We now define a dielectric profile mapping of a reference
due to the geometrical variations of a waveguide profile.  photonic crystal waveguide, Fig(d, onto a waveguide with
Our paper is organized as following. We first describea changing core size, Fig(d, by using the mapping=q;
some typical geometrical variations of two-dimensiof2)  +f,(qg;)f,(s),y=0,,z=s, where auxiliary functions,(q,) and
waveguide profiles. Next, we discuss the properties of gef(s) are chosen to be as in Fig. 2. As seen from this figure,
neric curvilinear coordinate transformations and formulatein each of the unit cells along the waveguide length the func-
Maxwell’'s equations in a curvilinear coordinate system. Wetionsf,(q;) andf,(s) are defined in such a way as to translate
apply this formulation to develop the coupled-mode and perthe reflector rods along the direction by an appropriate

turbation theories using eigenstates of an unperturbed wavgalue of the core size change, while leaving the smaller rods
guide as an expansion basis. We conclude with analysis of

several typical variations in 2D waveguides.

0

£s) (a)

II. GEOMETRICAL VARIATIONS OF WAVEGUIDE
PROFILES

I R

We start by considering several common geometrical .
variations of waveguide profiles that can be either deliber-
ately designed or arise during manufacturing as imperfec-
tions. Let(x,y,2z) correspond to Euclidian coordinate system.
In Fig. 1(a) an ideal 2D photonic crystal waveguide is pre-
sented. In what follows the operation frequency and all the
waveguide dimensions are chosen for a reference waveguide FIG. 2. Auxiliary functions for the coordinate mapping of a
to be single moded, with forward and backward propagatingeference 2D photonic crystal waveguifiéig. 1(a)] onto a wave-
fundamental modes confined by the band gap of the reflectoguide of a changing core siZ€ig. 1(c)].

fi(q)

—
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of a defect waveguide intact. These auxiliary functions andhe normalized covariant components of the fields, and in the
their first derivatives have to be continuous everywhere. Al-absence of free electric currents they are
though only the variations in the waveguide core size are

considered in this paper, the CMT derived in this article is Hy
general. For other variations the corresponding coordinate _ L 2 aii Ei - \w
mappings can be computed analytically or numerically from —iwe(q’,0%9 )D”ﬁ =é g
the original and final positions of the dielectric interfaces. Vg q
I1l. CURVILINEAR COORDINATE SYSTEMS Ex
!’T(
Following [26,27], we first introduce general properties of iwﬂ(ql,qz,q?’)D”—H_J: = eiik\“_g_, (1)
the curvilinear coordinate transformations. I(et,x?,x%) be vg! aqf

the coordinates in a Euclidian coordinate system. We intro- = _ R

duce a smooth mappingequiring continuity of the func- WhereD"=vgg' ande’™ is a Levi-Civita symbol.
tions and all their partial derivatives in the computation do-

main) into a new coordinate system with coordinates A. Modal orthogonality relations and normalization
(a',¢?,q) as (Xq,¢?,0) Xt 0%, 6% 4(at, 0%, 0%). A

new coordinate system can be characterized by its Covariagﬁ
basis vectorsy defined in the original Euclidian system a
a=(ox*aq',0x?1q',0x3/aq'). Now, define the reciprocal

(contravariant vector & as a':(ll\s‘%)aj Xak'k (KD #1, (marking parameters related to reference waveguide with a
where the metrig;; is defined ag;; = (ox/9q)(ox"/ ad), and gypscript zerpeither do not depend asor they are periodic
g=detg;). Vectors and their reciprocal satisfy the or-  fynctions ofs. We assume that eigenmodes and eigenvalues
thogonality conditionsa'-&,=4,;, §-a=g;, anda-a'=g",  of a reference waveguide are found in a coordinate system
whereg' is an inverse of the metrig;;. In general, a vector with a diagonalnon-necessarily unitayspace metric corre-
may be represented by its covariant componétga or  sponding to orthogonal coordinate system. Several orthogo-
by its contravariant componenE=¢4;. These components Nhality relations between the eigen modes of a reference
might have unusual dimensions because the underlying ve¥/@veguide are possible.

tors & and & are not properly normalized in a Euclidian A norm operatoB and its matrix representatigi.3] can
coordinate system. Components having the usual dimensioi introduced as

are defined byE,=e/\g", E=¢/\g;, andE=ed =E;il and

In the following we assume that reference waveguide is
ther uniform(planar waveguide, fibgror strictly periodic
S (photonic crystal waveguide, fiber gratinglong the direc-
tion of propagationg®=s. This implies that bothe, and

E:ééi:Eiﬂ, Whereﬂ andi' are unitary vectors. Normalized 0 00010
covariant and contravariant components are connected by 0 0 0-100
Ei=G;E' and E'=G'E; where G;=(Jg"/g;)g; and G' -~ o 0o o0 o000
=(vg;/g")g’. For orthogonal coordinate systems the metric B= 0-10 0 0ol 2
matrixes are diagonal and for the regular orthogonal and po- 100 0 00
lar coordinate systems they ag€@*=1, g™=1, g®*=1, ¢° 5 00 0 00

=1 andg®r=1, g°=1/p?, g*?=1, g°=p?, correspondingly.

relating the transverse components of the eigenfields. De-
pending upon the symmetry of a reference waveguide several
orthogonality relations are possible.

In the following, we summarize coupled-mode theory for  If reference waveguide profile is uniform alosgthen the
Maxwell's equations in curvilinear coordinates to treat radia-€igenfields have an additional symmetr#(q',q?,s)
tion propagation in generic nonuniform waveguides. The=Fz(a',q?)exp(iBs).
Hamiltonian formulation of Maxwell’s equations in regular (i) If €; and u, are strictly real, we introduce Dirac nota-
Euclidian coordinates is detailed if2,3,13, while the tion as|B)=F4(q*,g? and(B|=Fj(q",g*) and a product op-
Hamiltonian formulation and coupled-mode theory in curvi- erator <,8i|6|ﬁj>:fcrosdqldq2F+.(qlrqz)OFB-(qlrq2)7 where
linear perturbation-matched coordinates for the case of un : )

f q i fib t arbi ; is d 'O is a 6x6 operator matrix and integration is performed
tgirlrgdairr]l [3n2n3uqn| orm fibers of arbitrary cross sections Is degyer the waveguide cross section. Then, for any two eigen-

modes labeled by their propagation consta . the
The form of Maxwell's equations in curvilinear coordi- y propag RIS B

nates can be found in a variety of referen¢26-29. As- eigenmodes can be normalized %|B|BJ>:5@*'BJ”B1 and
suming the standard time dependence of the electrcmagnelliﬂﬁj!_zl- . _
fields F(qy,0p,03,t)=F(dy, 2, Ga)exp(-i wt) [F:(qu/\ﬁgll; (||) If € or ug has a complex part, we introduce Dirac
Eq,/\0%; Eq3/v?”; qul\e’g—“; qul\;g_zz; Hqsl\fgﬁss) de-  notation asB)=F4(q',q? and(B|=F4q*,q?), (no complex
notes a 6 component column vector of the electromagneticonjugation and a product operator (3]|O|B;)
fields] these expressions are compactly presented in terms off Crosdqldqugi(ql,qz)OFﬁj(ql,qz), where integration is

IV. COUPLED-MODE THEORY FOR MAXWELL'S
EQUATIONS IN CURVILINEAR COORDINATES
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performed over the waveguide cross section. Then for angefinition of the norm in the case of reg] and u, for peri-
two eigenmodes labeled by their propagation constants; odic and uniform waveguides can be chosen to be the same.

the eigenmodes can be normalizec{,aﬁ;é|,Bj>:5ﬁiﬁj 7, and

|75]=1. B. Expansion basis

i unperturbed waveguide profile is periodic alosgiith We now construct an expansion basis to treat radiation

p_enod_A, then a_ccordmg_to the Bloch-Floguet thleorzem thepropagation in a perturbed waveguide using the eigenfields
e|genfieldzs sl retain _a . szymmetry lF(cg 0.9 of a reference waveguide in the perturbation matched curvi-
=F4(07,07, S)expliBs), whereFy(q",q°,5)=F4(G7,0°,S*A).  jinear coordinate system. Equivalently, in the Euclidian co-
If € and o are strictly real, we ,Zntroduce Dirac notation as grginate system associated with a perturbed waveguide we
1B)=F4(a a°,9) and(B|=F4(a",q,s), as well as a product ¢onstruct an expansion basis from the eigenfields of an un-
operator(,Bi|O|,8j)=fce”dq1dq2dsF;i(q1,qz,s)OFBj(ql,q2,s), perturbed waveguide by spatially stretching them in such a
where O is a 6X6 operator matrix and integration is per- way as to match the regions of discontinuity in their field
formed over the whole unit cell of a periodic waveguide.components with the position of the perturbed dielectric in-
Then for any two eigenmodes labeled by their propagatiorierfaces. Finally, we find expansion coefficients by satisfying
constants 8, B the eigenmodes can be normalized asMaXWG!rS egugtions.dlnhthe :‘jollowing, we I']:il’St defineban_
1B18Y=5, 4 7, and|B|=1. Moreover, a corollary of the €XPansion basis and then demonstrate how perturbation
élglgcl]{ggloqﬁiéfj :ﬁéorerr'ﬁ,'tates that the eigenmodqie and theory and a coupled mode theory can be formulated in such

. X a basis.
B+2m /A are equivalent for any integer, and thus|g ' - . i
+ 271/ A)=exp(~2il A2)|). This implies that it suffices to . be¥:#) 0 S840 2 EOTAN CONGTAE 5YS o 8550
choose all the eigenvalueg in the first Brillouin zone P 9 a

Re(8) e (—m/A,m/A], and for such modes the definition dinate system corresponding to an unperturbed waveguide,

of the norm can be furthermore relaxed to where s is a direction of propagation, with corresponding
smooth coordinate transformation relating the two coordinate

be (Bi|BIB) = [cerdaidefdsF (g, 0%, S)BF 4 (47, 0%,S)  systems beingx(qt,q?,s),y(qt,62,9),2(qt, 62, 9)). Using the
:AfcrosdqldquEi(ql,qz,S)Bng(ql,qzls), where the integral transverse eigenfields of a reference waveguide expressed in
over a reference waveguide cross section is invariant for anghe coordinatesq’,g?,s) we form an expansion basis in the
cross sectionany s) in the first Brilloun zone. Thus, the Euclidian coordinate systeiix,y,z) as follows:

B0 06y, 2 GP%. 256 .2) ., By, 2. 66,2 SxY,2)

1 =2
i ja
| \/goqlql \/QOquZ
W) = 3
’ Her(a!(x,y,2),0%(x,Y,2),5(x,Y,2) i Hea(a(x,, 2),0%(x,Y,2),5(x,Y,2) -2
i i
\/ g()qlql \/ goq2q2 P
[
There are several important properties that basis vector C. Coupled-mode theory

fields (3) possess. First, if the coordinate transformation is

orthogonaqu{1'2*3}2i»q{lvzyg}), then one can show that any two ~ Maxwell's equations in curvilinear coordinate®, while
basis fields of Eq(3) are orthogonal in the sense of the seer_mngl)i cgmpllcated, involve an unperturbed, dielectric
orthogonality condition discussed in Sec. IV A. Moreover, in Profile €(q,a%,s). We look for a solution of Maxwell's equa-
the case of nonorthogonal smooth transformations, basions (1) in terms of the basis field¢3) which in the
fields (3) will be almost orthogonal with an amount of non- (a",0%S) coordinate system are the eigenfields of a reference
orthogonality proportional to the strength of perturbation.waveguide entering with corresponding coefficie@(s)
Second, the regions of discontinuity in the field componentsoordinates varying along the direction of propagation. Thus,
of the basis field93), by construction, coincide with the in the covariant coordinates for both uniform and periodic
positions of the perturbed dielectric interfaces. waveguides we look for a solution in the form
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the phase factor exyBz). Substituting expansiof#) into Eq.
(1), expressing components of the fields through the trans-

0
qu(qliqzls) qu(qliqz.s)
Vgaat Vgoaa' verse components, using the orthogonality relations of Sec.

E.o(t 2 9) EOZ(ql,q2’s) IV A, and manipulating the resultant expressions we arrive at
i i B the following equation:

\/ngqz o qu2q2

= 2. CFi(s) (4)
Ha(ahq’s) | 75 Ha(a,0%,9) 3
— aC(s -

Vgaat o'’ B% =i[BBy+ AM(s)]C(9), (5)

He(a', 0%, HY(q" 2.9)

2.2 —_—
\/gq q \/goqzqz R
B whereBﬁiﬂj:<ﬁi|B|,8j) is a constant normalization matrig,

Note that for a uniform reference waveguide, the expansioiis a diagonal matrix of eigenvalues of an unperturbed refer-
fields (3) are functions ofg',q?) only, and for both uniform ence waveguide, aniiM(s) is a matrix of coupling elements
and periodic reference waveguides basis fields are stripped gfven by

Eq(ata?s) | Equ(a',o%,9)
Vgoaat Vgoaa!
Egr(a.0%9) Eqe(c?,¢2.)
\ qu2q2 deqiqt degiqz degs 0 0 0 \ qu2q2
EXg 0% 9) dezqr dege degzs O 0 0 EXg 0% 9)
A = 1 \“JQTSS dest  desp  degs 0 0 0 \‘"gTSS
Man(® =0 0aaa] o cr e 0 0 0 dugq dugg d %(qt q? ’
cros qt g9, Mglqt UMglg2z UMgls qu(q ,g°,9)
gOqul 0 0 0 dquql d,U«qu2 dﬂqzs g0qlql
HA(o 02.9) 0 0 0 dusg duse dues /| HOqleR)
\ qu2q2 /goqzqz
HY(a", %) HY(q", %)
V! 0Oss Bi \/gTSS ﬁJ

(6)

where integration is performed over an unperturbed waveguide profile. Complex conjugation of the field on the left of the
matrix of coupling elements can be used whgrand u, are real and the reference waveguide is either uniform or periodic.
The unconjugated product can only be used with a uniform reference waveguide while an aftethor complex €, and

Mo as described in Sec. IV A. Assuming that the eigenfields of an unperturbed waveguide were found in a diagonal metric,

nonzero elements of 86 matrix AM(S) are

1 1
1,1 DYs)2 11 DYs)2
degrae = DTY - DY - G(D—S)’ dugrr = puDT - 4 DI - M( D - ,
SS SS
) 12
DYsD9® DYsD9®
deqige = degeqn = E( pa'a’ - ) v dugige = dugeq = /J,( pa'a’ - ) ,
Ss Ss
DY'SDSS DY'SDSS
degis = desg = €9 D ' dugts = dusgt = to D '
Ss Ss
2 2
22 (D99)? 22 D4’s)2
degzq2 = DIT - DY - 6( D ) v dugzge = puDIY - DI - M( D ) ,
SSs SSs
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DS DS
dfqzs = desq2 =€ dﬂqzs = dquz = Mo )
Dss Dss
EoDSS MODSS
degs= EODSE<1 - eDsos )! duss= #OD?)ﬁ(l - MDsOs ) (7)

wheree and i describe the profile of a perturbed waveguidevance. This can be of great advantage for computationally
(the casee=¢, and u=p, corresponds to shifting material demanding simulations of long structures.

boundariesand D'/ =gg!. Note that the matrix of coupling

elementsAM(s) is symmetric or Hermitian depending upon A. Eigenmodes of a perturbed uniform waveguide

the choice of normalization. Equatigb) presents a system
of first-order linear coupled differential equations with re-
spect to a vector of expansion coefficie@¥s). The bound-
ary conditions such as the modal content of an incoming an
an outgoing radiation define a boundary value problem thai
can be further solved numerically.

We first study convergence of a CMT when perturbed
waveguide remains uniform along the direction of propaga-
H’on [Fig. 3@)]. For such variations, a perturbed waveguide
till exhibits eigenmodes labeled by a new set of propagation
onstants. Presented in FigbBis convergence of a funda-

. ental mode propagation constant for a weakh0.1 and a
The presented coupled-mode theory describes complete&rongly 5=1.0 perturbed reference waveguide in a CMT

radiation scattering in arbitrary index-contrast Wavegume%ramework Fors=0.1 (top plob, inclusion of a single for-
With_ shifting dielectric boundaries and ghanging d.ieleCtricward propégating fu.ndamental ’mode results in errors of only
profile. Moreover,l Eq(5) allows perturba_tlve expansion. As several percent, suggesting the validity of a perturbation
the metric of a slightly perturbed coordinate system is onIytheory regime for a variation of this magnitude. 1.0
slightly different from the metric of an unperturbed coordi- bottom ploy, the variation is large and more thaﬁ 30 rﬁodes
nate system, that will naturally infroduce a small parameteére needed 'to reduce the errors to several percent. In both
for small geometrical perturbations of waveguide profiles.Cases propagation constants calculated by CMT a.re com-

Eiorh?ﬁggiimrittgse:22%2/ 4t%qanaly5|s of variations in pared to the propagation constants calculated by the asymp-
9 TR totically exactCAMFR code.

V. VARIATIONS IN 2D PHOTONIC CRYSTAL B. Scattering f brupt variati . id
WAVEGUIDES . Scattering from abrupt variations in a waveguide core

) ) We next study convergence of the transmitted and re-
In further examples we study propagation of TE polarizedyecteq powers from an abrupt variation in a waveguide core

radiation(the electric field is directed out of thez planeg in size. In Fig. 4a) a single-cell defect of strength=1.0 is
a line defect waveguide made of a periodic sequence of highs esented. Scattered powers into the forward and backward

index cylinders of radir,=0.2a embedded in a square lattice propagating fundamental modes as calculated by CMT are
of r,=0.3a dielectric rods of the reflectdi3]. The param-  ¢hown in Fig. 4b). For a strong variation o®=1.0, 30

etera defines the periodicity of a photonic crystal waveguide ,,4es are needed for convergence, while convergence is

in the direction of propagation. All the dielectric rods have¢,gier than linear when additional modes are added. As in the
index n=3.37. Perfectly conducting boundary conditions .oqe of uniform variations, for small perturbatiofs: 0.1

were imposed in the direction & from the waveguide gcartering coefficients can be calculated accurately with only
center line. The frequenay=0.25x 27rc/ais chosen so that o faw modes using perturbation theory.

the waveguide formed solely by a sequence of the dielectric
rods of radiiry=0.2a is guiding and is single moded, while a
reference photonic crystal waveguide is also single moded
guiding in the band gap of the reflector. We use asymptoti- In Fig. 5a) a schematic of a taper between a line defect
cally exactcAMFR [31] code to compute an expansion basiswaveguide in a square lattice of dielectric rods in air and a
constructed of the guided and evanescent eigenmodes of araveguide formed by a 1D sequence of dielectric rods is
unperturbed photonic crystal waveguide defined by the firspresented. To the left and to the right of the taper the photo-
unit cell in the Fig. 1a). A total of four guided modes with nic crystal is that of a reference waveguide. Many nuances of
real 8's (where backward and forward modes with the samearansmission of a fundamental mode through such a taper for
absolute values of their propagation constants are countefE polarization have been previously studied in the instan-
oneg and up to 58 evanescent modes with complex propataneous mode framewofk3]. We believe that the method of
gation constants were used in the expansion basis to studlystantaneous modes can be more efficient when larger varia-
convergence of the CMT. The advantage of our coupledtions(nonadiabatic tapeysre considered, and therefore con-
mode theory is the use at all points along the propagationergence with a fixed basis is slow. However, for smaller
direction of a single expansion basis precalculated in advariations(adiabatic tapejsconvergence with a fixed basis is

C. Scattering from tapers
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FIG. 4. (a) Schematics of a reference waveguideft) and a
single-cell defect in a reference waveguidght). (b) Convergence
b) of the transmitted and reflected powers into the forward and back-

ward propagating fundamental modes as calculated by CMT and

FIG. 3. (a) Schematics of a reference waveguideft) and a  6=1.0 perturbation.
perturbed uniform waveguidgight) of a larger core. Electric en-
ergy distributions in the fundamental modes are presented in thféring losses of 9.410°5dB/a, 2.6x10“dB/a, 1.3
corresponding first unit cellgb) Convergence of the fundamental v 13 dB/a, and 4.6< 103 dB/a for the corresponding’s.
mode propagation constant for a wealdy0.1 and a stronghf  one also observes? scaling of losses with perturbation
=1.0 perturbed reference waveguide in a CMT framework. strength. It was found that six expansion modes were enough

to reduce the errors in the scattering coefficients below 1%
efficient, while it becomes costly to recompute the instantafor all §'s.
neous expansion basis at different cross sections, thus ren-
dering a method employing a fixed basis to be more efficient
than a method employing instantaneous mo¢fes a de-
tailed discussion sef@)).

Here we investigate the magnitude of the backscattering Finally, we demonstrate how PT expansions can be useful
into the backward propagating fundamental mode as a funae design dielectric profiles that compensate for the undes-
tion of the taper length. In Fig.(B) we plot the reflected
power from the “unzipping” taper of strengi#=0.25 atw . D)= 2145 2L)
=0.25% 27rc/a as a function of the taper length The ex- 1660009990026003933
pected 112 decrease of the reflected power for the large
taper lengths 26cL <100 is clearly observed. It was found
that 16 expansion modes were enough to reduce the error in
the scattering coefficients below 2%. J

0 10 20 30 40 50 60
Number of Modes

E. Compensation of geometrical variations by changing
dielectric profile

D. Scattering from random variations in a waveguide core size

We now calculate the strength of backscattering from

small stochastic variations in a waveguide core size. The %§

computational domain is defined by taking a reference wave- £3

guide and changing the waveguide core Sighifting the §§

lower and upper reflector paytsr each unit celli by 2ag;, §§

where 2 is a core size of a reference wavegujéy. 63a)]. i

The random variable5; is considered to be distributed ac- Taper longth L. (5
cording to the Gaussian distribution with varianée For b)

each §=0.0025, 0.005, 0.01, 0.02 and=0.25X2xc/a,

backreflected power from a waveguide with stochastic core rG. 5. (a) Taper of an “unzipping” reflector around an index
size variations is presented as a function of propagation diguiding waveguide. To the left and to the right of the taper the
tancelL. Eachd curve represents an average over 30 realizaphotonic crystal waveguide is infinite and is described by the first
tions of stochastic variationgrig. 6(b)]. First, we observe unit cell of the schematic(b) Reflected power from the taper at
that power in the backscattered fundamental mode scales li;=0.25x 27rc/a as a function of taper length. Observe a 112
early with the length of propagatidn defining average scat- decrease of the reflected power with taper length.
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FIG. 7. Designing dielectric profile to negate the effects of
variations in a waveguide geometry. Presented is an undesired taper
0.04 P of strengths=-0.25 over the length of 20 unit cells. The square

: mesh corresponds to the nonoverlapping regions where dielectric is
modified, thus modeling the finite resolution and positioning accu-

Power in a back scattered mode
=3
=3
w

0=9.4e-5 dB/a

0.01 e 02604 Bl i racy of the index changing tool. The values of the dielectric con-
0 Wi — stant in various square regions were chosen to make the propagation
0 10 20 30 40 50 60 70 8 9 100 £ bed id h cl | h .
— constant of a perturbed waveguide matc cos_eyt e propagation
b) constant of an unperturbed reference waveguide along the whole

length of a taper. Only the material of high refractive index is modi-
_ _ _ fied, eon "°=[1+a(X,2)]engn The required change in the dielec-
FIG. 6. (a) Schematic of a computational domain to study back-yi. constanta(x,2) is presented in shades. In general, we observe

scattering losses due to waveguide core size variations. Variationg ¢ , ~ 5, consistent with the predictions of perturbation theory.
in the core size are assumed to be uncorrelated from one unit cell to

another and distributed according to the Gaussian distribution with )

varianceé. (b) For eaché, backreflected power from a waveguide L L (BolAM Bo.B, (z,6)|Bo)
i i i ion distance Q= | 0482~ Bo*= | dz ol

with “roughness” is presented as a function of propagation distance <~ B Bol” = ~ :

L. Each 6 curve represents an average over 30 realizations of 0 0 (BolB| Bo)

“roughness.” (8)

Py minimizing the objective functiorQ via changing the
gielectric profile we force the local propagation constant to
e that of an unperturbed reference waveguide, thus negating

ired weak variations in a waveguide geometry. One way 0
changing the dielectric constant of an underlying materia
b e etacon i emlosecond laser 80aL0fne efect of an undesred taper. We irocce possie
. . : " changes in the dielectric profile as ey+2;c;d(x—X;,2—z),
rently actively investigated for writing bulk and planar . . .
. ; . . : where ¢, corresponds to the dielectric profile of a reference
waveguides in various materials. With such a process the

index change is proportional to the exposure time to the ra\_/vavegmde, while the spot functiof(x-x;,z-2) is a local-

diation, while spatial resolution,., is determined by the ized function defining the intensity distribution_of a I_aser
laser spot size in focus. Thus, given the spatial resolutio pot focused at a poirl;, 7). For a set of focusing points

(“spot size") of the focused laser beam and positioning reso-*i»2) defined by the positioning resolution of the device, the
lution of a setup we investigate at what spatial points and!known coefficientsc; are then chosen to minimize the

with what intensities the laser beam has to be applied ty@/ue of the objective functio®. In general, such a formu-
reduce the effects of undesired variations. lation leads to a nonlinear optimization problem that can be

Particularly, in the case of a weak slow variaticiaper, approached by a variety of well-established numerical meth-
for example, the local propagation constant of a fundamen-0ds. Finally, the modified dielectric profile is reconstructed
tal mode(z) at a pointz along the waveguide can be ap- using optimalc;’s, and the success of optimization is judged

_ : . , by the ratio ofQqptimal’ Qunoptimi
roximated by the first-order perturbation correcti : R il imizati
p y p p) In Fig. 7 we present the results of optimization of the

=Bo* (Bl AM g, 5,(2)| Bo) {BolB| Bo), wherey corresponds to giglectric profile to negate the effects of an undesired taper of
the fundamentgl mode of a reference waveguide, Wh"%trength6=—0.25 over the length of.=20 unit cells. The
AMBo,ﬁO(Z) and B are defined in Sec. IV. As the matrix of waveguide on the left of the taper is assumed to be infinite
coupling element$6) My 5 (2) depends simultaneously on and described by the leftmost unit cell of the taper. The spot
the geometry of variation and underlying dielectric profile, function ¢(x-x;,z=z) is chosen to be unity defined on a
by modifying such a dielectric profile one can, in principle, Square of size\.=2a. It is also assumed that only the high-
compensate for the effects of undesired variations in waveindex dielectric can be modifiedgioy **=[1+a(X,2) J€ngh
guide geometry. To construct optimization problem we canlhe focus pointgx;,z) were chosen to create a square mesh
define an objective function as follows: of nonoverlapping laser spots. The intensities in various
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spots were optimized to reduce the objective functiBn VI. CONCLUSION

With such a chosen realistic spot size and positioning scheme

we managed to reduce the objective function by a factor of In this work, we presented a general form of the coupled-
10. In Fig. 7 we plot in shades the required change in thenode and perturbation theories to treat geometric variations
high-index dielectric in each of the focusing points. As ex-of generic waveguide profiles with an arbitrary dielectric in-
pected, the largest change in the dielectric profile happens idex contrast. Applications to various aspects of light propa-
the region of the largest geometric variation. As a rule, forgation in deformed 2D photonic crystal waveguides were
slow weak variations we find that the absolute chaage demonstrated. We conclude that semianalytical CMT and PT
the dielectric profile needed to compensate for the geometrican offer substantial computational advantages over time do-
variation and the absolute strength of such a geometric varianain and frequency domain methods when analyzing the
tion & are proportional to each other,~ 8, which is consis- impact of small imperfections or weak variations over large
tent with the predictions of perturbation theory. propagation distances.
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