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Perturbation theory permits the analytic study of small changes on known solutions, and is especially useful
in electromagnetism for understanding weak interactions and imperfections. Standard perturbation-theory tech-
niques, however, have difficulties when applied to Maxwell's equations for small shifts in dielectric interfaces
(especially in high-index-contrast, three-dimensional systethge to the discontinous field boundary
conditions—in fact, the usual methods fail even to predict the lowest-order behavior. By considering a sharp
boundary as a limit of anisotropically smoothed systems, we are able to derive a correct first-order perturbation
theory and mode-coupling constants, involving only surface integrals of the unperturbed fields over the per-
turbed interface. In addition, we discuss further considerations that arise for higher-order perturbative methods
in electromagnetism.

DOI: 10.1103/PhysReVvE.65.066611 PACS nunier41.20.Jb, 02.30.Mv

[. INTRODUCTION for rough-surface scattering, limited to one-dimensional un-
perturbed systems(z). Here, in contrast, we treat com-
Perturbation theory, a class of techniques to find the effegpletely arbitrary, three-dimensional unperturbed systems, and
of smallchanges oknownsolutions to a set of equations, is derive the perturbed eigenvalue and the eigenmode coupling
as important a tool for classical electromagnetism as it is foeoefficients rather than an integral equation for scattered
quantum mechanics and other fields. Not only does it allowight. In the special case of a shifted flat boundary in a wave-
one to apply the computational efficiency of idealized sys-guide of uniform cross section, our result for the eigenvalue
tems to more realistic problems, or to study effects too smalls equivalent to a variational approach that was postulated,
and weak to easily characterize numerically, but it also prowithout proof, in Ref[10]. For another particular case, that
vides a window of analytical insight into complex systemsof a waveguide with a slowly-varying cross section, our
otherwise accessible only via opaque numerical experimentg§iode-coupling coefficients are the same as previous expres-
Surprisingly, the standard forms of perturbation theory forsions derived by matching boundary conditiphgl1]. More-
electromagnetisnil—3] have serious limitations, rarely re- over, our result reduces to the conventional perturbative ex-
marked upon, when handling material-boundary perturbapressions in the limit of low index contrast, where those
tions[4—6] as depicted in Fig. 1. Since Maxwell's equations expressions have been most commonly empldygegl, as in
for lossless media can be cast in the form of a generalize®ef. [12]).
Hermitian eigenproblem in the frequenay [6,7] or, for a
waveguide, the axial wave numbgr[5,6], it might, at first, 1. PERTURBATION THEORY IN ELECTROMAGNETISM
seem that the general algebraic machinery of perturbation ) . o .
theory developed in quantum mechariig$ could apply di- We first review the application of 'standard pe(turbatlon—
rectly. We show, however, that the vectorial nature of theN€Ory techniques to electromagnetism, employing an ex-
electromagnetic field and its peculiar boundary conditions aPlicit analogy with the algebraic eigenproblem framework
discontinuous material interfaces require that special care be
taken in applying perturbative methods to the common prob- \ ey
lem of slightly shifted interfacege.g., from fabrication dis- .
ordeyp. In fact, ordinary perturbation theory produces expres-
sions that aréll defined and we demonstrate how correct
general expressions can be derived using a limit of anisotrop !
ically smoothed systemg$We do not consider shifting me-
tallic boundaries, for which accurate methods are already’,
available[9].) Finally, we remark on further considerations
that arise in evaluating perturbation theory for Maxwell’s g
) - 2
equations beyond the first order.
A clear statement of the problem with the usual perturba- s--

tion theory when it is applied to shifting dielectric bound- g 1. schematic of a perturbation due to a shifting interface
aries can be found in Ref4], similar to our discussion in  petween two dielectrics; and ¢,, where the shiftto the dashed
Sec. Il A. They constructed a Green’s function formulationboundary is by some small amourit (measured perpendicu]ar to
the unperturbed boundarywhich may vary across the surface. For
Large index contrasts, a modified perturbation theory is required to
*Electronic address: maksim@omni-guide.com obtain the correct change in the eigensolutions.
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developed for quantum mechanics. There are a number of|E|?). Often, for uniform waveguide fields withz(t) de-
ways in which Maxwell's equations can be written as anpendence'(#?~ Y the eigenproblem is cast instead in terms
eigenproblem, but it suffices to focus on one: the generalizedf the wave numbep [5,6], in which case the shift can be
eigenproblem in the electric fielE) with time dependence either derived independently by similar methods or be in-

e '“'in a source-free linear dielectrig(x): ferred via the group velocityB®=—w®/(dw/dB). For
) convenience, we will focus mainly on the differential form of
w
VXV x|E)=| <] #lE), @y E&

where we use the Dirac notation of basis-independent state A. The problem of shifting boundaries

kets|E)and inner product$E|E’)=[E*-E'dV [8,13]. As- Consider the numerator of E(B) in the case of an inter-
suming thate is purely real(lossless and positive, then this face between two dielectrics; ande,, that shifts a distance
eigenproblem is Hermitian and positive semidefinite, leadind1(a,u,v) towardse,, where {1,v) parametrize the interfa-
to realw solutions. Since it is a generalized eigenproblemcial surface, as depicted in Fig. 1. Sincés a step function,
the eigenstates are orthogonal under the inner produdts derivative is a Diracd function that produces a surface
(E|e|E"). Typically, one is concerned with bound modes integral over the interface:

(e.g., in a cavity or waveguideand/or periodic systems

where Bloch’s theorem applid¥], and so the integrals are E(0) d_s E(0) :f dAﬂ(s —&,)|E@)2 )
effectively of finite spatial extent and the eigenvalues are da da "1 2 '
discrete.

To apply perturbation theory, one must have some smak.q integral,
paramete\ o characterizing the perturbation—for example
A« could be~Ag for a small change ine, or the volume
Aa~ AV of the change for a small boundary shift of a piece-

wise constant. Then, in the standard meth¢8], the new finite nerturbation form of Eq(2) corresponds to simply

e|gensolutloo?s|E>(n)and w are e;xpar:gi)ed n pO\(I\(/))eI’B of " picking one side of the interface on which to evalugte,
A‘g |E}:En:o|E ) and 0=3,_ '™, with [E™) and  \yhich has been shown to yield incorrect resuBss]; the
() being the unperturbed eigensolution and wherenttie  error worsens as the dielectric contréatd thus the magni-
term is proportional to £ a)". Corrections E"~?) are de-  tyde of the field discontinuityincreases, but it has been a
fined such thatE(?|¢|E("~?)=0, and the series are substi- popular method for low-contrast systerfi2]. (Of course,
tuted into Eq.(1) and solved order by ordefin the case of  for TM fields in two dimensiong2D) that are everywhere
degeneratgequalew) unperturbed modes, the well-known parallel to the boundaridg], there is no problemWhy has
modification of degenerate perturbation theory must be apperturbation theory failed? The source of the error was the
plied: linear combinations are chosen to diagonalize the firstassumption that the lowest-order correcti@tb)is of first
order correctior{8].] The first-order correctiom”) from @ order in Aa—here, because of the discontinuous boundary
perturbationAe is then easily found to be conditions, there are points where the correctigh is finite
even for infinitesimalA «, foiling the order-by-order solution
_ ﬂ _<E(O)|A8| E®) ) of perturbation theory.
2 (EOg|EO@) It might seem that one could simply recast the eigenprob-
lem in terms of the magnetic field], which is everywhere
This can be thought of as either an approximate expressiogontinuous, but a similar difficulty arises—not only the field
for the change inv due to the perturbatiofaccurate as long correction, butalso the eigen-operators applied to this cor-
as (E]Ae|E®) is smal), or anexactexpression for the rection must be of first order iha, and VX H is discon-

however, is manifestly undefined, since the
' normal componerk, to the interface is discontinuous at the
boundary(only D, =¢E, and the parallel component,

are continuous [9]. Alternatively, naively employing the

o=

derivative ofw in the limit of infinitesimalA «, tinuous. In fact, comparing with thel eigenproblem is an-
other way to see that there is a problem in perturbation
£(0) de £(0) theory for Maxwell’'s equations with larg&e. Applying the
do »© da same procedure as for ER) to the H eigenequationV
=, (3 X1/eVXH=(w/c)?H, and then rewriting in terms ofE
d 2 (0) (0) . ' '
“ (E®[s|E™) one obtains alifferentresult:

which is simply the Hellman-Feynman theord®)]. Simi-

larly, higher-order perturbation theory can be recast as exact £O)| 25 } £
expressions for higher-order derivatives of the eigenvalue or W ) il I
the eigenfields. W= (EOL[ED) 5

Such an electromagnetic perturbation theory, and equiva-
lent formulations (sometimes derived via the variational
principle instead of the explicit eigenproblgmhas seen which is only equivalent to Eq2) if Ae is the small pertur-
widespread usgl-3,5, e.g., to determine the effect of ma- bation parametef19]. Both formulations are ill defined for
terial losses(small imaginaryAe) or nonlinearities Ae shifting boundarie$with Eqg. (5), the problem is the discon-
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X
& T s(X)EJ gs(X—x")e(x")dx’, (7
T wheregg(x) is some smoothing function: a localized func-
- x = h(o) tion (distribution aroundx=0, of unit integral, that goes to

a Dirac delta functions(x) in the limit as s—0. Thus,
de/dh=(g;—¢,)g4(x—h), and the contribution to

(E@|de/da|E®) from dA in this smoothed system is: (
—g,)dh/dadAf|E@|?2g4(x—h)dx. If we now takes—O0,
however, we merely recover the original problem: we have

FIG. 2. Schematic of a small, locally flat region of the dielectric the integral of a step functiorﬁﬁ) times aé function, and
interface frome; to e, atx=h(«), wherex designates the direction ihe |imit is undefined.

perpendicular to the surface. We consider a perturbation consisting | we can stumble acrossny smoothing method that cir-

of a small shift of the interface in the direction f. cumvents this problem, yielding a well-defined limit, then
the uniqueness theorem for Maxwell’s equations will mean

tinuity of D] and their inconsistency has further unfortunatethat we are done—there is no need to otherwise prove that a
implications for higher-order perturbation theory, as we dis-9iven smoothing is “correct” (and such well-defined
cuss in Sec. IV. smoothings are certainly not unique, if any exigt this

One Way Of So|ving th|s prob|em in Certain cases is topoint, we take a hint from effective medium theory, and re-
express the perturbation not ad\a, but as a transformation alize that the most appropriate boundary smoothing in elec-
of the coordinate system that moves the boundaries—in thi§omagnetism isanisotropie—different field components
way, the field boundary conditions can be preserved, and thghould “see” different average dielectric constaftd —-16.
perturbation is expressed via a distorfak operation. Such Specifically, there is an effectiviensor
a perturbation theory was developed and successfully applied _
to the problem of uniformly scaled or stretched waveguides: e(X)
unlike the conventional method, it yields correct results even (x)= (%) 8
in high-contrast system@.g., for fiber birefringenog5,6]. el )= € . '
As discussed in Sec. IV, the coordinate-transform method &(X)
may have additional advantages for computing higher-order
corrections. Coordinate transformations, however, are cumgg thatg; (E,,) seese from Eq. (7), while E, (E,) sees
bersome to apply for arbitrary interface perturbations, anqnstead ~
also result in integrals that are not conveniently localized to
the perturbed surface. We circumvent both of these short- 3
comings by instead deriving a perturbation theory from a s(x)*lsf gs(x—x")e(x") tdx’. 9
limit of systems withsmoothedoundaries.

dharmonicmeane,

(Precisely such an anisotropic smoothing has been employed
to greatly speed convergence, compared to unsmoothed or
isotropically smoothed boundaries, in numerical simulations

_If, instead of a discontinuous transition fram to &5, the  with finite spatial resolutiofil5,16.) From Eq.(9), one finds
dielectric function changes smoothly, thaft field compo- that da/dh= _Z(X)Z(Sl—l_sz—l)g (x—h), and thus the
S ’

nents are continuougd e is small for a small boundary shift, A 0 o .
and we can apply Ed3) without difficulty. The answer for contribution to(E*®|des/da|E®) from dA is
the discontinous system should then be the limit as the tran- dh

sition becomes sharper and sharper—this limit must be dAd_f dx[Aeqy Eﬁo)lz—A(s[21)|sEi°)|2]gS(x—h),
unique, soit does not matter how we do the smoothing so a

long as the limit is well definedn order to consider smooth- (10
ing explicitly, we focus on a small arabA where the inter- B S -1 1
face is locally flat(deferring until later the question of kinks Where Aeip=e;—e, and A(ey;)=e; —e, . Note that
or corners in the boundaryand definex as the coordinate D, =¢E, is continuous, so when we take tie-0 limit and
perpendicular to the boundarysat h(«), depicted in Fig. 2.  gs(x—h) becomess(x—h), the result is well defined, giving
The local dielectric function is then

B. A solution for shifting boundaries

de dh B
e(X)= 81+ (52— 81)O(x—h), (6) <E<°> @’E<°>>= f dAS—[Ae 1l E”|?= A1) DIV,
(11)
where®(x) is the unit step function at=0. ~ This expression, combined with E¢3), yields a correct
To start with, let us consider a simple isotropic smoothing first-order perturbation theory for arbitrary boundary defor-
replacinge with ¢ given by mations and arbitrary index contrasts. Reassuringly, if we
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apply the same limit process to the alternate first-order pereoupled-mode equations expanded in the instantaneous

turbation theory of Eq(5), we get the same resuliVe also  eigenmodes at each one usese=z in Eq. (12). If one

check it numerically below. expands in the eigenmodes of a fixed cross section rather
There are two points that we glossed over in the derivathan those of the instantaneous cross sectiddz is re-

tion above: the effect of kinks in the surface and of change§,|aced(to first ordey by Ah in Eq. (12). This equation can

in the interface orientation, both of which contributions turmn 5150 pe used for higher-order perturbation the@righer-

out to be of measure zero. Akink or corner can be thought ofger derivatives inx), given that the additional consider-

as the limit of a tighter and tighter bend in the interface—but,;i s discussed in Sec. IV are addres$@te perturbative

In this I|m|F, th‘? area of_the ka region goes to zero and theexpansion for finitel @ then follows from the Taylor series.
field remains finite, so its contribution to E(LO) vanishes.

Kinks yield discontinuous changes in the interface orientas The generalization to multiple shifted interfaces, and/or to

tion, whereas any continuous change can be expressed agés that varies over an interface, is obvious. In the case of
rota’tion dé of the surface in addition to the shifth, and shifting boundaries for magnetic materialsonuniform

enters the theory as a rotation matrix transforming the dielec? 1) the perturbation theory’s difficulty and its solution are

tric tensor of Eq.(8). This results in a term proportional to Precisely analogous, with:, H, and B substituting for
(s —73)d0/da, which integrates to zero in the—0 limit it & E» andD, respectively.
is everywhere finite and is zero away from the interjace

The same method can be used to determine the coupling
coefficients between modes, e.g., for time-dependent pertur-
bation theory(or zdependent, in waveguideslso known as
coupled-mode theorjl,11], as well as for higher-order per- In order to numerically verify that our perturbation theory
turbation theory. Such coupling coefficients, derived in thefor shifting boundaries yields the correct result, we consider
usual way[8], stumble over the same problem with discon-an arbitrary test case that exhibits a nonuniform shift of a
tinuities as in first-order perturbation theory. The correct coucurved boundary, changing boundary orientations, kinks, and
pling coefficient between the unperturbed modE$ and  large index contrast, and also lacks any special relationship
|E’) for a shifth(a,u,v) in the interface, using the notation between the field direction and the surface normal. In par-

Ill. ATEST CASE

from above, involve$20] the surface integral ticular, we start with a uniform rectangular waveguidéong
de dh z)_ of indexn=3 and dimensions&x_a (wherea is an ar-

< E _‘ E’> — j dA——[Ae(Ef -Ef) bitrary length scalg .surrounded by air(=1). Then, to one

da da of the 2a edges(lying along thex=0 plang, we add a
—A(e)(D*-D))], (120  Gaussian “bump” of heighth(y)=ae‘y2’2""2, where the

bump width isw=a/2, as depicted in the insets of Fig. 3.
which is again defined purely in terms of the field compo-Note thata<<0 corresponds to an indentation, and the bump
nents that are continuous across the interface. In the case isfabruptly terminated at= *a, yielding a shifting surface
a waveguide with slowlyzvarying cross section, for kink. Given this “bumped” waveguide, we consider the
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02

FIG. 4. Absolute fractional difference in
dw/da between perturbation theory and numeri-
cal differentiation as a function of computational
resolution(in pixels/a) for the even mode of Fig.
3. Each dotted line is the difference at a given
for the lowest-order even modgee., one line per
filled circle of Fig. 3, and the thick black line is
the mean value. The large oscillations stem from
both discretization noise and the fact that the sign
of the difference is not fixedt sometimes passes
almost through zeng but the overall trend is the
expected power-law decline.

0.01

0.001

fractional difference (error) in derivatives

0.0001 . ; — ‘ L i
resolution (pixels/a)

lowest-order guided modes, with dependencee'#?, at a  yielding sharp accidental dipsAveraging overa to smooth
wave numbers=m/a, and compute&lw/da at various val- these oscillations results in a clearer picture of the decaying
ues ofa. Since the waveguide is symmetric aroynd0, we  error (shown as a thick black line in Fig)4
examine the lowest-order modes that are even or odd with |t is also instructive to compare our perturbation theory of
respect to this mirror planécorresponding to modes mostly Eq. (11) with the incorrect Eq(4) that ignores the boundary
polarized along thex or y direction, respectively discontinuity—in the latter case, we simply evalufi® on
The fully vectorial eigenfields and frequencies of thiSthe |ow-index side of the boundadorresponding to the
structure are computed in a&a% 5a supercell with periodic  5ive application of the standard E@) for positive A«a].
boundaries by preconditioned conjugate-gradient minimiza—rhen, at a resolution of 75 pixels/ we compute the abso-
tiop of the block Rayleigh quotient in a plane-waye baSiS’Iute fractional difference idw/da with the numerical de-
using a freely available software packddé. (The size of ivative, as a function of, and plot the results in Fig. 5. For

the supercell is actually irrelevant for our purposes; a smal[ ) . . .
-the incorrect perturbation theory, as in RE8), systematic
supercell would merely produce the modes of coupled peri; rrors are revealed: significant differencesceeding 100%6
odic waveguides, and would be just as stringent a test of th - SIgnitice . aing ?
that do not decrease with increasing resolution. The errors

perturbation theory.Given these fields for a particular, we h derabl for th de than for th
compute the line integral of Eq11) over the bump surface N€'e are considerably worse for the even mode than for the

(bilinearly interpolating the fields from the discrete compu-©dd mode because the latter is mostly polarized parallel to

tational grig and then employ Eq3) for dw/de. For com- the interface(minimizing the I.EL discontinuity—although

parison, we evaluate the explicit numerical derivativethe errors for the odd mode increase as the bump becomes

dw/da by computing the eigenfrequency at various nearbylarger and thereby less parallel o The error in the incor-

values ofa and applying Ridder’s method of polynomial rect theory is proportional to the surface intedrale;,/e5

extrapolationwhich maximizes the resulting precisidii7].  +A(e;)]1/dA|D, |?, wheree, here is the dielectric on the

The two answers are compared, as a functior aih Fig. 3  low-index side of the boundary. If we instead evaluate the

(at a computational resolution of 75 pixed$/ and demon- incorrect theory on the high-index side, only this is af-

strate that the perturbation method yields accurate results. fected, and so the error changes merely by a constant factor
Of course, there are errors in both the perturbation theoryof 1/9, in this case

and the numerical derivative due to the finite computational

resolution, so the two results do not match precisely. Such

differences, however, should decline in roughly a power-law

relationship with the resolutiof21], and we display this de- V. REMAINING QUESTIONS

cline in Fig. 4 for each value ofr evaluated above. The Perturbation theory, in principle, provides not only a first-

absolute fractional difference between the two derivativeorder correction to an eigenvalue, but also a systematic way

oscillates widely around this decline, of course, due to botho find the series of higher-order corrections to both the ei-

the discretization noiséhe boundary shape does not changegenvalue and eigenfield. Similarly, coupled-mode theory

in a continuous fashigrand the fact that the difference is not need not be used in the small-perturbation limit—it can be

of a fixed sign(so it sometimes passes almost through zerothought of as an exact set of coupled linear differential equa-
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tions, expressing the mode in terms of the unperturbed eigemreferably without solving any new differential equations;
modes with varying coefficients. For both of these tech-perhaps such corrections can themselves be a perturbative
niques, however, the discrepancy between the perturbativexpansion.

expressions of Eqs2) and(5) from theE andH eigenprob- Fortunately, in most cases where perturbation theory is of
lems is symptomatic of an underlying problem—the two for-interest, first-order accuracy is sufficient, and there a poor
mulations are only equivalent to first order, and they cannopasis is not a problem. There are situations in which this is
both be correct to higher orders. How could this be? Bothpgt enough, however; for example, when the first-order cor-
coupled-mode t_heory and_the _standard_ perturbation_-theorb(ection is zero by some symmetry, or if one wishes to explore
method(8] for first-order eigenfield or higher-order eigen- jyientional mode conversion in a strong-coupling limit. If the

value corrections rely on one key assumption that is false fofa . hation is due to shifting boundaries, one possible solu-

Maxwell's eguatlons: they assume that the basis of the UM5on is the coordinate-transformation method alluded to ear-
perturbed eigenstates é@mplete

In fact, when theE eigenproblem is solved, one normally lier [5,6]—since it can preserve the boundary conditions,

imposes the additional constraint of zero free charge, OFhere are indications that it is able to efficiently compute,

V- ¢E=0 (whence the discontinuous boundary condition on®9- second-order eigenvalues.
E,). The perturbed fieldE’, however, satisfiesV-(e
+Ae)E’'=0, so in generalV-¢E'#0 andE’ cannot be

expanded in the basis of the unperturbed fields. Relaxing V. CONCLUDING REMARKS
this divergence-free constraint would mean the inclusion of _ _ o
infinitely many static-field solutions ab=0, as seen by In this paper, we explained and solved a difficulty that

taking the divergence of both sides of Ed), which would  arises on applying perturbation theory to Maxwell's equa-
be (at the least computationally inconvenient. In contrast, tions for small shifts in dielectric interfaces, especially
the H eigenproblem involves the constrai-uH=0, in three-dimensional, high-index-contrast systems. The
which is not altered byAe, so it appears that thd formu-  resulting expression, Eq§ll) and(12), is a simple surface
lation is correct to higher orders. Alternatively, one couldintegral over the perturbed interfasg and we have also
formulate the eigenproble® or B (handlingAx as well as  numerically illustrated its correctness for an arbitrary curved
Ae). For the B8 eigenproblem(in waveguides these com- boundary distortion. Such a perturbative method is useful for
pleteness issues do not seem to arise—there, one works ahawide variety of applications, from fiber birefringence
fixed w# 0 frequency, so nondivergenceless fields are alwayf5,12|, to waveguide tapering and adiabatic coupling,
excluded. Even when a complete basis is employed, howto surface roughness, to tuning of cavity modes and photonic
ever, one is likely to encounter convergence difficulties duéband gaps by geometric alteratiofs.g., strain induced

to Gibb’s phenomen#l8] that will arise from the shifted Open questions persist, however, in the computation
field discontinuities. Thus, it may be desirable to find someof higher-order perturbative corrections. We hope to
corrections to the unperturbed modes in order to make #&urther expand the reach of perturbative techniques in future
complete, fast-converging basis for the perturbed systenwork.
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