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Perturbation theory for Maxwell’s equations with shifting material boundaries

Steven G. Johnson, M. Ibanescu, M. A. Skorobogatiy,* O. Weisberg, J. D. Joannopoulos,
and Y. Fink
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~Received 26 February 2002; published 20 June 2002!

Perturbation theory permits the analytic study of small changes on known solutions, and is especially useful
in electromagnetism for understanding weak interactions and imperfections. Standard perturbation-theory tech-
niques, however, have difficulties when applied to Maxwell’s equations for small shifts in dielectric interfaces
~especially in high-index-contrast, three-dimensional systems! due to the discontinous field boundary
conditions—in fact, the usual methods fail even to predict the lowest-order behavior. By considering a sharp
boundary as a limit of anisotropically smoothed systems, we are able to derive a correct first-order perturbation
theory and mode-coupling constants, involving only surface integrals of the unperturbed fields over the per-
turbed interface. In addition, we discuss further considerations that arise for higher-order perturbative methods
in electromagnetism.
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I. INTRODUCTION

Perturbation theory, a class of techniques to find the ef
of smallchanges onknownsolutions to a set of equations,
as important a tool for classical electromagnetism as it is
quantum mechanics and other fields. Not only does it al
one to apply the computational efficiency of idealized s
tems to more realistic problems, or to study effects too sm
and weak to easily characterize numerically, but it also p
vides a window of analytical insight into complex system
otherwise accessible only via opaque numerical experime
Surprisingly, the standard forms of perturbation theory
electromagnetism@1–3# have serious limitations, rarely re
marked upon, when handling material-boundary pertur
tions @4–6# as depicted in Fig. 1. Since Maxwell’s equatio
for lossless media can be cast in the form of a general
Hermitian eigenproblem in the frequencyv @6,7# or, for a
waveguide, the axial wave numberb @5,6#, it might, at first,
seem that the general algebraic machinery of perturba
theory developed in quantum mechanics@8# could apply di-
rectly. We show, however, that the vectorial nature of
electromagnetic field and its peculiar boundary conditions
discontinuous material interfaces require that special car
taken in applying perturbative methods to the common pr
lem of slightly shifted interfaces~e.g., from fabrication dis-
order!. In fact, ordinary perturbation theory produces expr
sions that areill defined, and we demonstrate how corre
general expressions can be derived using a limit of anisot
ically smoothed systems.~We do not consider shifting me
tallic boundaries, for which accurate methods are alre
available@9#.! Finally, we remark on further consideration
that arise in evaluating perturbation theory for Maxwel
equations beyond the first order.

A clear statement of the problem with the usual pertur
tion theory when it is applied to shifting dielectric boun
aries can be found in Ref.@4#, similar to our discussion in
Sec. II A. They constructed a Green’s function formulati
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for rough-surface scattering, limited to one-dimensional u
perturbed systems«(z). Here, in contrast, we treat com
pletely arbitrary, three-dimensional unperturbed systems,
derive the perturbed eigenvalue and the eigenmode coup
coefficients rather than an integral equation for scatte
light. In the special case of a shifted flat boundary in a wa
guide of uniform cross section, our result for the eigenva
is equivalent to a variational approach that was postula
without proof, in Ref.@10#. For another particular case, th
of a waveguide with a slowlyz-varying cross section, ou
mode-coupling coefficients are the same as previous exp
sions derived by matching boundary conditions@1,11#. More-
over, our result reduces to the conventional perturbative
pressions in the limit of low index contrast, where tho
expressions have been most commonly employed~e.g., as in
Ref. @12#!.

II. PERTURBATION THEORY IN ELECTROMAGNETISM

We first review the application of standard perturbatio
theory techniques to electromagnetism, employing an
plicit analogy with the algebraic eigenproblem framewo

FIG. 1. Schematic of a perturbation due to a shifting interfa
between two dielectrics«1 and «2, where the shift~to the dashed
boundary! is by some small amounth ~measured perpendicular t
the unperturbed boundary!, which may vary across the surface. F
Large index contrasts, a modified perturbation theory is require
obtain the correct change in the eigensolutions.
©2002 The American Physical Society11-1
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developed for quantum mechanics. There are a numbe
ways in which Maxwell’s equations can be written as
eigenproblem, but it suffices to focus on one: the generali
eigenproblem in the electric fielduE& with time dependence
e2 ivt in a source-free linear dielectric«(x):

“3“3uE&5S v

c D 2

«uE&, ~1!

where we use the Dirac notation of basis-independent s
kets uE&and inner productŝEuE8&[*E* •E8dV @8,13#. As-
suming that« is purely real~lossless! and positive, then this
eigenproblem is Hermitian and positive semidefinite, lead
to real-v solutions. Since it is a generalized eigenproble
the eigenstates are orthogonal under the inner pro
^Eu«uE8&. Typically, one is concerned with bound mod
~e.g., in a cavity or waveguide! and/or periodic system
where Bloch’s theorem applies@7#, and so the integrals ar
effectively of finite spatial extent and the eigenvalues
discrete.

To apply perturbation theory, one must have some sm
parameterDa characterizing the perturbation—for examp
Da could be;D« for a small change in«, or the volume
Da;DV of the change for a small boundary shift of a piec
wise constant«. Then, in the standard method@8#, the new
eigensolutionsuE& and v are expanded in powersn of
Da: uE&5(n50

` uE(n)& and v5(n50
` v (n), with uE(0)& and

v (0) being the unperturbed eigensolution and where thenth
term is proportional to (Da)n. CorrectionsuE(n.0)& are de-
fined such that̂E(0)u«uE(n.0)&50, and the series are subs
tuted into Eq.~1! and solved order by order.†In the case of
degenerate~equal-v) unperturbed modes, the well-know
modification of degenerate perturbation theory must be
plied: linear combinations are chosen to diagonalize the fi
order correction@8#.‡ The first-order correctionv (1) from a
perturbationD« is then easily found to be

v (1)52
v (0)

2

^E(0)uD«uE(0)&

^E(0)u«uE(0)&
. ~2!

This can be thought of as either an approximate expres
for the change inv due to the perturbation~accurate as long
as ^E(0)uD«uE(0)& is small!, or an exactexpression for the
derivative ofv in the limit of infinitesimalDa,

dv

da
52

v (0)

2

K E(0)U d«

da UE(0)L
^E(0)u«uE(0)&

, ~3!

which is simply the Hellman-Feynman theorem@8#. Simi-
larly, higher-order perturbation theory can be recast as e
expressions for higher-order derivatives of the eigenvalue
the eigenfields.

Such an electromagnetic perturbation theory, and equ
lent formulations ~sometimes derived via the variation
principle instead of the explicit eigenproblem!, has seen
widespread use@1–3,5#, e.g., to determine the effect of ma
terial losses~small imaginaryD«) or nonlinearities (D«
06661
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;uEu2). Often, for uniform waveguide fields with (z,t) de-
pendenceei (bz2vt), the eigenproblem is cast instead in term
of the wave numberb @5,6#, in which case the shift can b
either derived independently by similar methods or be
ferred via the group velocity,b (1)52v (1)/(dv/db). For
convenience, we will focus mainly on the differential form
Eq. ~3!.

A. The problem of shifting boundaries

Consider the numerator of Eq.~3! in the case of an inter-
face between two dielectrics,«1 and«2, that shifts a distance
h(a,u,v) towards«2, where (u,v) parametrize the interfa
cial surface, as depicted in Fig. 1. Since« is a step function,
its derivative is a Diracd function that produces a surfac
integral over the interface:

K E(0)U d«

da UE(0)L 5E dA
dh

da
~«12«2!uE(0)u2. ~4!

This integral, however, is manifestly undefined, since
normal componentE' to the interface is discontinuous at th
boundary~only D'5«E' and the parallel componentsEi
are continuous! @9#. Alternatively, naively employing the
finite-perturbation form of Eq.~2! corresponds to simply
picking one side of the interface on which to evaluateE' ,
which has been shown to yield incorrect results@5,6#; the
error worsens as the dielectric contrast~and thus the magni-
tude of the field discontinuity! increases, but it has been
popular method for low-contrast systems@12#. ~Of course,
for TM fields in two dimensions~2D! that are everywhere
parallel to the boundaries@7#, there is no problem.! Why has
perturbation theory failed? The source of the error was
assumption that the lowest-order correctionuE(1)& is of first
order in Da—here, because of the discontinuous bound
conditions, there are points where the correctionE'

(1) is finite
even for infinitesimalDa, foiling the order-by-order solution
of perturbation theory.

It might seem that one could simply recast the eigenpr
lem in terms of the magnetic field@7#, which is everywhere
continuous, but a similar difficulty arises—not only the fie
correction, butalso the eigen-operators applied to this co
rection must be of first order inDa, and“3H is discon-
tinuous. In fact, comparing with theH eigenproblem is an-
other way to see that there is a problem in perturbat
theory for Maxwell’s equations with largeD«. Applying the
same procedure as for Eq.~2! to the H eigenequation,“
31/«“3H5(v/c)2H, and then rewriting in terms ofE,
one obtains adifferent result:

v (1)5
v (0)

2

K E(0)U«2DS 1

« D UE(0)L
^E(0)u«uE(0)&

, ~5!

which is only equivalent to Eq.~2! if D« is the small pertur-
bation parameter@19#. Both formulations are ill defined for
shifting boundaries@with Eq. ~5!, the problem is the discon
1-2
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PERTURBATION THEORY FOR MAXWELL’S EQUATIONS . . . PHYSICAL REVIEW E 65 066611
tinuity of Di# and their inconsistency has further unfortuna
implications for higher-order perturbation theory, as we d
cuss in Sec. IV.

One way of solving this problem in certain cases is
express the perturbation not as aD«, but as a transformation
of the coordinate system that moves the boundaries—in
way, the field boundary conditions can be preserved, and
perturbation is expressed via a distorted“3 operation. Such
a perturbation theory was developed and successfully app
to the problem of uniformly scaled or stretched waveguid
unlike the conventional method, it yields correct results ev
in high-contrast systems~e.g., for fiber birefringence! @5,6#.
As discussed in Sec. IV, the coordinate-transform met
may have additional advantages for computing higher-or
corrections. Coordinate transformations, however, are c
bersome to apply for arbitrary interface perturbations, a
also result in integrals that are not conveniently localized
the perturbed surface. We circumvent both of these sh
comings by instead deriving a perturbation theory from
limit of systems withsmoothedboundaries.

B. A solution for shifting boundaries

If, instead of a discontinuous transition from«1 to «2, the
dielectric function changes smoothly, thenall field compo-
nents are continuous,D« is small for a small boundary shift
and we can apply Eq.~3! without difficulty. The answer for
the discontinous system should then be the limit as the t
sition becomes sharper and sharper—this limit must
unique, soit does not matter how we do the smoothing
long as the limit is well defined. In order to consider smooth
ing explicitly, we focus on a small areadA where the inter-
face is locally flat~deferring until later the question of kink
or corners in the boundary!, and definex as the coordinate
perpendicular to the boundary atx5h(a), depicted in Fig. 2.
The local dielectric function is then

«~x!5«11~«22«1!Q~x2h!, ~6!

whereQ(x) is the unit step function atx50.
To start with, let us consider a simple isotropic smoothi

replacing« with «̄ given by

FIG. 2. Schematic of a small, locally flat region of the dielect
interface from«1 to «2 at x5h(a), wherex designates the direction
perpendicular to the surface. We consider a perturbation consi
of a small shift of the interface in the direction of«2.
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«̄~x![E gs~x2x8!«~x8!dx8, ~7!

wheregs(x) is some smoothing function: a localized fun
tion ~distribution! aroundx50, of unit integral, that goes to
a Dirac delta functiond(x) in the limit as s→0. Thus,
d«̄/dh5(«12«2)gs(x2h), and the contribution to

^E(0)ud«̄/dauE(0)& from dA in this smoothed system is («1
2«2)dh/dadA* uE(0)u2gs(x2h)dx. If we now takes→0,
however, we merely recover the original problem: we ha
the integral of a step function (E'

2 ) times ad function, and
the limit is undefined.

If we can stumble acrossany smoothing method that cir
cumvents this problem, yielding a well-defined limit, the
the uniqueness theorem for Maxwell’s equations will me
that we are done—there is no need to otherwise prove th
given smoothing is ‘‘correct’’ ~and such well-defined
smoothings are certainly not unique, if any exist!. At this
point, we take a hint from effective medium theory, and
alize that the most appropriate boundary smoothing in e
tromagnetism isanisotropic—different field components
should ‘‘see’’ different average dielectric constants@14–16#.
Specifically, there is an effectivetensor

«s~x![S «̃~x!

«̄~x!

«̄~x!

D , ~8!

so thatEi (Eyz) sees«̄ from Eq. ~7!, while E' (Ex) sees
instead aharmonicmean«̃,

«̃~x!21[E gs~x2x8!«~x8!21dx8. ~9!

~Precisely such an anisotropic smoothing has been emplo
to greatly speed convergence, compared to unsmoothe
isotropically smoothed boundaries, in numerical simulatio
with finite spatial resolution@15,16#.! From Eq.~9!, one finds
that d«̃/dh52 «̃(x)2(«1

212«2
21)gs(x2h), and thus the

contribution to^E(0)ud«s /dauE(0)& from dA is

dA
dh

daE dx@D«12uEi
(0)u22D~«12

21!u«̃E'
(0)u2#gs~x2h!,

~10!

where D«12[«12«2 and D(«12
21)[«1

212«2
21 . Note that

D'5 «̃E' is continuous, so when we take thes→0 limit and
gs(x2h) becomesd(x2h), the result is well defined, giving

K E(0)U d«

da UE(0)L 5E dA
dh

da
@D«12uEi

(0)u22D~«12
21!uD'

(0)u2#.

~11!

This expression, combined with Eq.~3!, yields a correct
first-order perturbation theory for arbitrary boundary defo
mations and arbitrary index contrasts. Reassuringly, if

ng
1-3
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FIG. 3. Comparison of perturbation theor
~symbols! and numerical differentiation~lines!
for dv/da as a function ofa, applied to a Gauss-
ian ‘‘bump’’ of height a on top of a 2a3a rec-
tangular dielectric waveguide~illustrated at the
two extremes of thea axis!. The comparison is
shown for the lowest-order modes of even~filled
symbols! and odd~hollow symbols! parity with
respect to the mirror symmetry plane of th
waveguide.
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apply the same limit process to the alternate first-order p
turbation theory of Eq.~5!, we get the same result.~We also
check it numerically below.!

There are two points that we glossed over in the deri
tion above: the effect of kinks in the surface and of chan
in the interface orientation, both of which contributions tu
out to be of measure zero. A kink or corner can be though
as the limit of a tighter and tighter bend in the interface—b
in this limit, the area of the kink region goes to zero and
field remains finite, so its contribution to Eq.~10! vanishes.
Kinks yield discontinuous changes in the interface orien
tion, whereas any continuous change can be expressed
rotation du of the surface in addition to the shiftdh, and
enters the theory as a rotation matrix transforming the die
tric tensor of Eq.~8!. This results in a term proportional t
( «̄2 «̃)du/da, which integrates to zero in thes→0 limit ~it
is everywhere finite and is zero away from the interface!.

The same method can be used to determine the coup
coefficients between modes, e.g., for time-dependent pe
bation theory~or z dependent, in waveguides!, also known as
coupled-mode theory@1,11#, as well as for higher-order per
turbation theory. Such coupling coefficients, derived in
usual way@8#, stumble over the same problem with disco
tinuities as in first-order perturbation theory. The correct c
pling coefficient between the unperturbed modesuE& and
uE8& for a shifth(a,u,v) in the interface, using the notatio
from above, involves@20# the surface integral

K EU d«

da UE8L 5E dA
dh

da
@D«12~Ei* •Ei8!

2D~«12
21!~D'

* •D'8 !#, ~12!

which is again defined purely in terms of the field comp
nents that are continuous across the interface. In the cas
a waveguide with slowly z-varying cross section, fo
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coupled-mode equations expanded in the instantane
eigenmodes at eachz, one usesa5z in Eq. ~12!. If one
expands in the eigenmodes of a fixed cross section ra
than those of the instantaneous cross section,dh/dz is re-
placed~to first order! by Dh in Eq. ~12!. This equation can
also be used for higher-order perturbation theory~higher-
order derivatives ina), given that the additional conside
ations discussed in Sec. IV are addressed.~The perturbative
expansion for finiteDa then follows from the Taylor series.!

The generalization to multiple shifted interfaces, and/or
a D« that varies over an interface, is obvious. In the case
shifting boundaries for magnetic materials~nonuniform m
Þ1), the perturbation theory’s difficulty and its solution a
precisely analogous, withm, H, and B substituting for
«, E, andD, respectively.

III. A TEST CASE

In order to numerically verify that our perturbation theo
for shifting boundaries yields the correct result, we consi
an arbitrary test case that exhibits a nonuniform shift o
curved boundary, changing boundary orientations, kinks,
large index contrast, and also lacks any special relations
between the field direction and the surface normal. In p
ticular, we start with a uniform rectangular waveguide~along
z) of index n53 and dimensions 2a3a ~wherea is an ar-
bitrary length scale!, surrounded by air (n51). Then, to one
of the 2a edges~lying along thex50 plane!, we add a
Gaussian ‘‘bump’’ of heighth(y)5ae2y2/2w2

, where the
bump width isw5a/2, as depicted in the insets of Fig. 3
Note thata,0 corresponds to an indentation, and the bu
is abruptly terminated aty56a, yielding a shifting surface
kink. Given this ‘‘bumped’’ waveguide, we consider th
1-4
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FIG. 4. Absolute fractional difference in
dv/da between perturbation theory and nume
cal differentiation as a function of computation
resolution~in pixels/a) for the even mode of Fig.
3. Each dotted line is the difference at a givena
for the lowest-order even mode~i.e., one line per
filled circle of Fig. 3!, and the thick black line is
the mean value. The large oscillations stem fro
both discretization noise and the fact that the si
of the difference is not fixed~it sometimes passes
almost through zero!, but the overall trend is the
expected power-law decline.
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lowest-order guided modes, withz dependenceeibz, at a
wave numberb5p/a, and computedv/da at various val-
ues ofa. Since the waveguide is symmetric aroundy50, we
examine the lowest-order modes that are even or odd
respect to this mirror plane~corresponding to modes most
polarized along thex or y direction, respectively!.

The fully vectorial eigenfields and frequencies of th
structure are computed in a 5a35a supercell with periodic
boundaries by preconditioned conjugate-gradient minim
tion of the block Rayleigh quotient in a plane-wave bas
using a freely available software package@16#. ~The size of
the supercell is actually irrelevant for our purposes; a sm
supercell would merely produce the modes of coupled p
odic waveguides, and would be just as stringent a test of
perturbation theory.! Given these fields for a particulara, we
compute the line integral of Eq.~11! over the bump surface
~bilinearly interpolating the fields from the discrete comp
tational grid! and then employ Eq.~3! for dv/da. For com-
parison, we evaluate the explicit numerical derivati
dv/da by computing the eigenfrequency at various nea
values ofa and applying Ridder’s method of polynomia
extrapolation~which maximizes the resulting precision! @17#.
The two answers are compared, as a function ofa, in Fig. 3
~at a computational resolution of 75 pixels/a), and demon-
strate that the perturbation method yields accurate resul

Of course, there are errors in both the perturbation the
and the numerical derivative due to the finite computatio
resolution, so the two results do not match precisely. S
differences, however, should decline in roughly a power-l
relationship with the resolution@21#, and we display this de
cline in Fig. 4 for each value ofa evaluated above. The
absolute fractional difference between the two derivati
oscillates widely around this decline, of course, due to b
the discretization noise~the boundary shape does not chan
in a continuous fashion! and the fact that the difference is n
of a fixed sign~so it sometimes passes almost through ze
06661
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yielding sharp accidental dips!. Averaging overa to smooth
these oscillations results in a clearer picture of the decay
error ~shown as a thick black line in Fig. 4!.

It is also instructive to compare our perturbation theory
Eq. ~11! with the incorrect Eq.~4! that ignores the boundar
discontinuity—in the latter case, we simply evaluateuEu2 on
the low-index side of the boundary@corresponding to the
naive application of the standard Eq.~2! for positive Da#.
Then, at a resolution of 75 pixels/a, we compute the abso
lute fractional difference indv/da with the numerical de-
rivative, as a function ofa, and plot the results in Fig. 5. Fo
the incorrect perturbation theory, as in Ref.@6#, systematic
errors are revealed: significant differences~exceeding 100%!
that do not decrease with increasing resolution. The er
here are considerably worse for the even mode than for
odd mode because the latter is mostly polarized paralle
the interface~minimizing the E' discontinuity!—although
the errors for the odd mode increase as the bump beco
larger and thereby less parallel toE. The error in the incor-
rect theory is proportional to the surface integral@D«12/«x

2

1D(«12
21)#*dAuD'u2, where«x here is the dielectric on the

low-index side of the boundary. If we instead evaluate
incorrect theory on the high-index side, only this«x is af-
fected, and so the error changes merely by a constant fa
~of 1/9, in this case!.

IV. REMAINING QUESTIONS

Perturbation theory, in principle, provides not only a firs
order correction to an eigenvalue, but also a systematic
to find the series of higher-order corrections to both the
genvalue and eigenfield. Similarly, coupled-mode the
need not be used in the small-perturbation limit—it can
thought of as an exact set of coupled linear differential eq
1-5
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FIG. 5. Absolute fractional difference in
dv/da between perturbation theory and nume
cal differentiation as a function of bump heigh
a, for a resolution of 75 pixels/a. We plot both
our corrected perturbation theory~solid lines,
circles! and the ill-defined perturbation theor
~dashed lines, triangles! of Eq. ~4! in which the
discontinuous field is simply evaluated on th
low-index side of the interface. Results for th
lowest-order even mode are shown as filled sy
bols and for the odd mode as hollow symbols.
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tions, expressing the mode in terms of the unperturbed eig
modes with varying coefficients. For both of these tec
niques, however, the discrepancy between the perturba
expressions of Eqs.~2! and~5! from theE andH eigenprob-
lems is symptomatic of an underlying problem—the two fo
mulations are only equivalent to first order, and they can
both be correct to higher orders. How could this be? Bo
coupled-mode theory and the standard perturbation-the
method@8# for first-order eigenfield or higher-order eige
value corrections rely on one key assumption that is false
Maxwell’s equations: they assume that the basis of the
perturbed eigenstates iscomplete.

In fact, when theE eigenproblem is solved, one normal
imposes the additional constraint of zero free charge,
“•«E50 ~whence the discontinuous boundary condition
E'). The perturbed fieldE8, however, satisfies“•(«
1D«)E850, so in general,“•«E8Þ0 and E8 cannot be
expanded in the basis of the unperturbed fields. Relax
this divergence-free constraint would mean the inclusion
infinitely many static-field solutions atv50, as seen by
taking the divergence of both sides of Eq.~1!, which would
be ~at the least! computationally inconvenient. In contras
the H eigenproblem involves the constraint“•mH50,
which is not altered byD«, so it appears that theH formu-
lation is correct to higher orders. Alternatively, one cou
formulate the eigenproblemD or B ~handlingDm as well as
D«!. For theb eigenproblem~in waveguides!, these com-
pleteness issues do not seem to arise—there, one works
fixedvÞ0 frequency, so nondivergenceless fields are alw
excluded. Even when a complete basis is employed, h
ever, one is likely to encounter convergence difficulties d
to Gibb’s phenomena@18# that will arise from the shifted
field discontinuities. Thus, it may be desirable to find so
corrections to the unperturbed modes in order to mak
complete, fast-converging basis for the perturbed syst
06661
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preferably without solving any new differential equation
perhaps such corrections can themselves be a perturb
expansion.

Fortunately, in most cases where perturbation theory is
interest, first-order accuracy is sufficient, and there a p
basis is not a problem. There are situations in which this
not enough, however; for example, when the first-order c
rection is zero by some symmetry, or if one wishes to expl
intentional mode conversion in a strong-coupling limit. If th
perturbation is due to shifting boundaries, one possible s
tion is the coordinate-transformation method alluded to e
lier @5,6#—since it can preserve the boundary condition
there are indications that it is able to efficiently compu
e.g., second-order eigenvalues.

V. CONCLUDING REMARKS

In this paper, we explained and solved a difficulty th
arises on applying perturbation theory to Maxwell’s equ
tions for small shifts in dielectric interfaces, especia
in three-dimensional, high-index-contrast systems. T
resulting expression, Eqs.~11! and ~12!, is a simple surface
integral over the perturbed interface~s!, and we have also
numerically illustrated its correctness for an arbitrary curv
boundary distortion. Such a perturbative method is useful
a wide variety of applications, from fiber birefringenc
@6,12#, to waveguide tapering and adiabatic couplin
to surface roughness, to tuning of cavity modes and photo
band gaps by geometric alterations~e.g., strain induced!.
Open questions persist, however, in the computat
of higher-order perturbative corrections. We hope
further expand the reach of perturbative techniques in fut
work.
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