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Relaxation in a perfect funnel

Maxim Skorobogatyy, Hong Guo, and Martin Zuckermann
Department of Physics and Centre for the Physics of Materials, McGill University, Montre´al, Québec, Canada H3A 2T8

~Received 23 August 1996!

We have exactly solved the relaxational dynamics of a model protein that possesses a kinetically perfect
funnel-like energy landscape. We find that the dependence of the relaxation timet on the density of states
~DOS! and the energy level spacing distributions of the model displays several main types of behavior de-
pending on the temperatureT. This allows us to identify possible generic features of the relaxation. For some
ranges ofT, t is insensitive to the density of states; for intermediate values ofT it depends on the energy level
spacing distribution rather than on the DOS directly, and it becomes gradually more dependent on DOS with
increasing temperature; finally, the relaxation can also be determined exclusively by the presence of a deep gap
in the energy spectrum rather than by the detailed features of the density of states. We found that the behavior
of t crucially depends on the degeneracy of the energy spectrum. For the special case of exponentially
increasing degeneracy, we were able to identify a characteristic temperature that roughly separates the relax-
ational regimes controlled by energetics and by entropy, respectively. Finally, the validity of our theory is
discussed when roughness of energy landscape is added.@S1063-651X~97!04804-6#

PACS number~s!: 87.15.2v, 36.20.Ey, 05.20.2y
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I. INTRODUCTION

It is well known that natural proteins fold into their nativ
structures remarkably quickly in times on the order of 1 s in
spite of the enormous number of possible physical confi
rations@1#. On the other hand, it is also clear that heteropo
mers with completely random monomer-monomer inter
tions usually do not fold on a reasonable time scale@2#. One
explanation put forward to resolve this discrepancy is t
protein sequences are ‘‘optimized’’ such that not only
there a stable unique structure for the ground state@3#, but
there is also a funnel-like energy landscape that leads to
ficient folding kinetics@4–6#. A principle of minimal frustra-
tion was proposed@8# to enforce a selection of the intera
tions between monomers such that as few energetic con
occur as possible. Among other things, considerable theo
ical effort has concentrated on finding proper models for p
tein folding and investigating various sequencings that l
to fast folding kinetics. Due to the immense complexity
the problem, much of our understanding and intuition h
been obtained from a variety of computer simulations ba
on lattice models@9–11#.

In this paper we concentrate on the folding scenario
volving a funnel-like energy landscape@4–6# where the fun-
nel ‘‘guides’’ the protein into the low energy native stru
ture. Along the pathway, the protein is believed to
through several distinct states including the molten glob
state, a folding transition region, and a glass transition
gion. Even though the funnel landscape possesses a ce
amount of roughness, which slows the folding kinetics,
folding process is largely speaking guided by the global f
nel structure and the protein can in this way rapidly find
native state. Although there is no clear experimental e
dence of the existence of this folding scenario, it is nevert
less theoretically interesting and has attracted much atten
in the literature. In general, the folding kinetics for funne
like energy landscapes is very complicated and analyt
studies have proved to be quite difficult. In this regard,
551063-651X/97/55~6!/7354~10!/$10.00
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interesting study is due to Zwanzig@7# where some of the
general properties of the folding kinetics were examined
ing an extremely simple model.

Even though there are many folding models for spec
proteins, we believe that it is intuitively useful to investiga
the generic behavior of the folding kinetics. This, in som
sense, is similar to finding universality classes in critical ph
nomena. The purpose of this paper is to report our studie
this direction. In particular we examine a simple statistic
mechanical model that mimics all the basic properties o
perfect funnel-like landscape in the absence of roughn
We also discuss the validity of our results for the case
involving a small amount of roughness~see below!. The
landscape itself consists of a set of energy levels formin
quasicontinuous spectrum with a single level lying far bel
this spectrum. All the levels represent conformational en
gies of the protein with the lowest level representing t
native state. This model is quite general and is not exclus
to proteins. It could, for example, represent certain classe
polymers.

There are many interesting questions concerning pro
folding kinetics that we would like to answer from an anal
sis of our model. For instance, for a protein sequence
folds rapidly to its native state, what is the role played by t
energy spectrum along the folding pathway? What is the r
of energy level spacing statistics on the folding kinetic
How does the relaxation process of our system depend
parameters such as temperature? These are interesting
difficult general questions that are relevant to the foldi
kinetics, since the protein passes through the energy s
trum during the folding process. An analytical answer
these questions for a general protein problem has so far
been possible. However, as we show below for our mod
which is a generalization of that studied in Ref.@7#, analyti-
cal solutions can be found when the funnel structure has
roughness and reasonable approximations could be mad
find an answer when small roughness is included. Our p
spective is that exact solutions are valuable since they ca
7354 © 1997 The American Physical Society
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55 7355RELAXATION IN A PERFECT FUNNEL
used as a starting point for further more complicated mod
similar to our experiences in critical phenomena and ph
transitions.

To this purpose, we have derived analytical expressi
for our model~see below! that show that the energy spe
trum and the energy spacing statistics can play an impor
role in folding kinetics. In particular the dependence of t
folding timet on the energy level distribution of the variou
models can be classified into three main types of beha
depending on the temperatureT. For a considerable range o
T, t is insensitive to the level distribution; for intermedia
values ofT it depends directly on the distribution and b
comes gradually more model dependent; finally, in the th
case the folding kinetics is determined exclusively by
presence of the deep gap in the energy spectrum rather
by the details of the energy level distribution. We found th
the behavior oft crucially depends on the degeneracy of t
energy spectrum. For the special case of exponentially
creasing degeneracy, we were able to identify a character
temperature that roughly separates the relaxational reg
controlled by energetics and by entropy, respectively. O
general formula for this simple model is consistent with e
isting literature in the appropriate limits and we present
merical solutions to confirm the physical picture indicated
our analytical results.

This paper is organized in the following manner. A ge
eral expression for the relaxation time is derived in Sec.
Sections III and IV presents results for the applications
this expression. Finally a short summary is presented in S
V.

II. RELAXATION KINETICS

By analogy with Ref.@7#, we focus on a perfect funnel
like energy landscape defined by an abstract ‘‘reaction co
dinate’’ X. For example,X could represent a specific prote
structure that has energyE(X). We emphasize again tha
whether or not a real protein possesses funnel-like ene
landscape is unclear, but we shall examine the conseque
of this landscape. A perfect funnel with no roughness
schematically shown in Fig. 1. Clearly this is a considera
simplification of the problem, but it allows us to investiga
the relaxational kinetics completely analytically. As di
cussed below, other features can be systematically adde
later, such as a small amount of roughness.

Thus, as the system relaxes or the ‘‘protein’’ folds, it ro
down the funnel,E(X), to the final native structure charac
terized by energyE0. Now a particular model can be de
scribed in terms of its energy level distribution or its dens
of states. Here we consider the situation where there arN
quasicontinuous energy levels with density of statesD(E)
and one distant levelE0, lying at a distanceDE0 below the
quasicontinuous spectrum~see Fig. 1!. During the folding
process~relaxation process! we assume@7# that in any tran-
sition between configurations,X changes only by61, which
means that the system performs a nearest neighbor ran
walk in one-dimensional reaction coordinate space. For
perfect funnel energy landscape considered here,X→X61
also implies that energy transitions only occur between n
est neighboring levels. In this work we use Metropolis tra
sition rates, the same as used in Ref.@7#, which is justified
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since no roughness is included in the model. On the ot
hand, if the landscape is very rough indicating entanglem
of the polymer or protein, Metropolis rates will not be a
equate. The Metropolis rates satisfy the requirement of
tailed balance,

W~X→X11!PX~eq!5W~X11→X!PX11~eq!, ~1!

where PX(eq) is the equilibrium distribution given by
Boltzmann factor. UsinggX and gX11 as the degeneracie
of the X and X11 energy levels, one can the
introduce the following transition rates:W(X→X11)
5(gX11 /gX)exp@2(EX112EX)/T# and W(X11→X)51.
The second condition, which is independent of temperat
T, corresponds to the zero roughness on theE(X) landscape.

The folding or relaxation kinetics is studied using a ma
ter equation. We focus on the probability,Pi
( i50,1,2,. . . ,N), of being at energy levelEi during the
relaxation. Introducing variablesa i[exp2nFi /T where
nFi5Fi112Fi iP$0,N21%, and Fi5Ei2Tlngi we can
write down the following matrix equation for the evolutio
of the probabilities:

dP̄

dt
5AP̄, ~2!

where the matrix coefficient is given by

A5I 2a0 1 0 0 •

a0 212a1 1 0 •

0 a1 212a2 1 •

0 0 a2 212a3 •

• • • • •

I . ~3!

Because the total probability is a constant, the matrixA is
thus degenerate and there are onlyN independent probabili-
ties out of a total ofN11. We denote the average neare

FIG. 1. Schematic plot of the perfect funnel-like energy lan
scape in reaction coordinate space. The energy spectrum has
lying ground state with energyE0 and a quasicontinuum part that
specified by the levelsEi with iP@1,N#.
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7356 55MAXIM SKOROBOGATYY, HONG GUO, AND MARTIN ZUCKERMANN
neighbor energy level spacing byŪ. We then make the rea
sonable assumption thatŪ!nE0, which is basically a con-
sequence of having a spectrum with a few low lying ene
levels and a quasicontinuous part in the upper part of a s
trum. Several limits can be obtained directly from the fo
of the matrixA. For 0<T!Ū and Ū!T!DE0, A essen-
tially becomes a constant matrix largely independent of te
perature except with only a few temperature dependent te
and thus the folding kinetics is independent of the ene
spectrumD(E). The same is true for very high temperatur
where entropy is the dominant factor. At temperatu
T;DE0@Ū, almost all matrix elements ofA become con-
stants except those few involving energy differences com
rable to theDE0. This suggests that in this case the foldi
kinetics is exclusively determined by the presence of the
in the energy spectrum while almost all quasicontinuous l
els are already excited.

A nontrivial result was obtained for the temperature ran
T;Ū. Here the kinetics can substantially depend on the
ergy distribution of the quasicontinuous part of the spectru
We first find a relaxation time at temperatures small eno
that one can disregard the rate of escape from the na
state. In this range the master equation of~2! becomes
dP0 /dt5P1 and

dP̄8

dt
5MP̄8, ~4!

where P̄8 is a vector (P1 ,P2 , . . . ,PN). The matrixM is a
submatrix ofA without its first row and first column. As the
relaxation proceeds, i.e., when our system rolls down
perfect funnelE(X), the total relaxation time from the high
est energy levelEN to the lowest oneE0, gives a measure o
the relaxation time. To determine this relaxation timet rel we
notice that the system has relaxed when all states withPi ,
iP$1,N%, have been sequentially relaxed. Therefo
t rel;( i51

N ti , wheret i are the relaxation times for the stat
with Pi .

It is worth pointing out that at low temperatures the rela
ation time of a system coincides with its folding time into t
ground ~native! state because the native state at these t
peratures is an equilibrium state of the system. As temp
ture increases, however, the equilibrium state of the sys
shifts to the quasicontinuous part of the spectrum. He
t rel will characterize the folding time to the appropriate eq
librium. Keeping this in mind, we now calculatet rel . From
Eq. ~4! we have( i51

N ti52( i51
N 1/l i wherel i are the eigen-

values of the matrixM . As det(M )Þ0, 1/l i are the eigen-
values of matrixM21. In this way we finally obtaint rel in
terms of the trace ofM21 sincet rel;2Tr(M21).

The calculation of Tr(M21) is lengthy and is included in
the Appendix. Here we outline the main steps. We not
thatM5L1dL, whereL is a constant matrix anddL con-
tains the temperature dependent elements ofM . We seek
M21 in a perturbative form given byM215( i50

1`S( i ). It
turns out that this sum only has a finite number of nonv
ishing terms and can thus be summed exactly. Essenti
from MM215I one derives a set of equations forS( i ) that
can be solved to giveS( i )5(21)i(S0dL) iS0, whereS0 is a
triangular matrix with all the upper right elements equal
y
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21. Because of the simplicity ofdL andS0, (S0dL) i50 for
all i>N. After lengthy but straightforward algebra we obta

M215I 1 0 0 0 •

a1 1 0 0 •

a1a2 a2 1 0 •

a1a2a3 a2a3 a3 1 •

• • • • •

I S0. ~5!

t52Tr~M21!5N1a11a21•••1a1a21a2a31•••

1a1a2a31•••. ~6!

We now solve the problem in general for allT. To find
the relaxation timet of this perfect-funnel model, we use th
fact that the total probability is conserved, i.e., that

P0512(
i51

N

Pi . ~7!

Then Eq.~2! is equivalent to

dP̄8

dt
5a0d̄1~M2a0dM !P̄8, ~8!

whered̄[$1,0,0, . . .%. Thus the kinetics will be determine
by the matrix (M2a0dM ), wheredM is a matrix with the
first row consisting of 1 and the rest of the elements equa
zero. As discussed above, the relaxation time of the sys
can be found as the trace of (M2a0dM )21. To compute
this trace we use the perturbation expansion introdu
above and seek an inverse matrix in the form

~M2a0dM !215H ~0!1H ~1!1H ~2!1•••. ~9!

Using the identity

I[~M2a0dM !~H ~0!1H ~1!1H ~2!1••• !,

we find a set of equations forH ( i ) that can be solved to give
H ( i )5M21(a0dMM21) i , whereM21 is found earlier and is
given by Eq.~5!. Hence,

~M2a0dM !215M21~11a0~dMM21!1a0
2~dMM21!2

1•••.

Introducing a new quality

Ri[11a i1a ia i111a ia i11a i131•••1a i•••aN21
~10!

one can easily show that the required inverse matrix can
written as

~M2a0dM !215M211a0M
21dMM21@12~a0R1!

1~a0R1!
22~a0R1!

31•••#. ~11!

This is an important result and the trace of this matrix giv
the relaxation time of our model.

Formally the sum in the brackets of Eq.~11! is a geomet-
ric series, which we can rewrite in a more compact form



nl

ca

d
-

in

n

s

in
en
res-

ener-

-
on
lax-
is-
the
-
s,
. In

han

be-

ent

55 7357RELAXATION IN A PERFECT FUNNEL
~M2a0dM !215M211
a0

11a0R1
M21dMM21. ~12!

Strictly speaking the summation of the series is allowed o
when a0R1,1. Thus in principle we should use Eq.~11!
when this condition is not satisfied. It turns out, by numeri
comparisons, that Eq.~12! is correct even fora0R1.1. Even
though this indicates that there is most probably a more
rect way of deriving Eq.~12! rather than via the series ex
pansion used here, we use Eq.~12! to proceed further and
present numerical confirmation of this procedure later.

The relaxation time is then given by

t52Tr~M21!2
a0

11a0R1
Tr~M21dMM21!. ~13!

Using the explicit forms of the matrices as given by Eq.~5!
anddM , after lengthy but straightforward algebra we obta

Tr~M21!5N1 (
i51

N21

(
j51

N2 i

a j•••a j1 i21 ~14!

and

Tr~M21dMM21!5R11~R11R2!a11~R11R21R3!a1a2

1•••1~R11•••1RN!a1•••aN21 .

~15!

If we defineZi asZi[( j5 i
N exp2Fj /T, Zi is then the par-

tition function for theN2 i energy levels starting ati and
Ri is given byRi5Ziexp(Fi /T). The above results can the
be considerably simplified and the expression fort becomes

t52Tr~M21!2

(
i51

N

Zi
2exp~Fi /T!

Z0
. ~16!

Using Eqs.~14!–~16! we arrive at the main result of thi
work,
ws
y

l

i-

t5h11h2 , ~17!

where

h15SN1 (
i51

N21

(
j51

N2 i

a j•••a j1 i21D , ~18!

h252

(
i51

N

Zi
2exp~Fi /T!

Z0
. ~19!

Because this result is quite complicated, we first apply it
the next section to various specific situations, and th
present numerical results obtained using the general exp
sion of Eqs.~17!–~19!.

III. THE ROLE OF LEVEL STATISTICS

As a first application of the result given by Eq.~17!, we
examined the case where the energy levels are nondeg
ate, i.e.,gX51 for all X, then local free energyFi coincides
with the energyEi . In this limit the expression for the relax
ation time can be greatly simplified. Also, we shall focus
low temperatures. In this case we shall prove that the re
ation timet is determined by the energy level spacing d
tributions. These distributions can be computed from
density of statesD(E). Since very different models, i.e., dif
ferentD(E)’s, can give quite similar spacing distribution
the relaxation in this temperature regime is quite generic
the next section we shall show that even whengX.1, similar
conclusions can be reached if the temperature is lower t
some characteristic temperature.

A. The relaxation time

For temperatures much smaller than the energy gap
tween the ground state and the first excited state,DE0, and
taking into account that there are no exponentially diverg
pieces in the second termh2 of Eq. ~17!, we can safely
neglecth2 since it is much smaller than theh1 term. Fur-
thermore we notice that
a ja j11 . . .a j1 i215exp2
Ej112Ej1Ej122Ej111•••1Ej1 i2Ej1 i21

T

5exp2
Ej1 i2Ej

T
. ~20!
The relaxation timet can therefore be expressed as follo
in terms of the level spacing probability:

p~ i !~S![ (
j51

N2 i

d~Ej1 i2Ej2S!,
which measures the probability thatEj1 i2Ej equalsS for
all level indicesj . Using this definition we find

(
j51

N2 i

a j•••a j1 i215E
0

1`

p~ i !~S!expS 2
S

TDdS.
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From Eqs.~17! and ~18! we obtain

t5t rel'N1 (
i51

N21 E
0

1`

p~ i !~S!expS 2
S

TDdS. ~21!

It is clear that small values of the level spacingS give the
largest contribution to the integrals in Eq.~21! and this is
especially true for low temperatures. On the other hand,
higher order energy level spacing distributions,p( i )(S) is
small for small values ofS. Hence, for lowT the term con-
taining the nearest neighbor spacing distribution,p(1)(S), is
most important in determining the relaxation timet. As T
increasest begins to depend on higher order energy le
spacing distributions. Since more and morep( i )(S) begin to
play a role asT increases, we expect the model details
become increasingly important. However, it is easy to sh
thatp( i )(S) for largei must be universal: as the levels are f
apart there is little level correlation and the spacing distri
tion therefore approaches a Gaussian. Hence we ex
model independence to return whenT reaches values*Ū.
Finally, if p( i )(S) is less sensitive to model peculiarities th
the density of states,D(E), we expect that the relaxatio
kinetics measured by the relaxation timet is approximately
generic as it only depends on several low order spacing
tributions in this low temperature range. We shall confi
this picture by computingp( i )(S) and in particularp(1)(S) in
terms ofD(E).

B. The spacing distribution

To relateP( i )(S) to the density of statesD(E), which
specifies our models, let us take any two energy lev
and consider the probability that the first level lies in t
interval @E,E1dE# while the second level lies in
@E1S,E1S1dS#. To find p( i )(S) we use an approximat
approach@13–15# analogous to mean field theory in whic
the energy distributionD(E) is assumed to be locally ran
dom. This allows us to use a simple approach based on p
ability theory. First we note that there arei21 levels in the
interval @E,E1S# and the remainingN2 i levels are outside
this interval. The probability for this to occur is proportion
to @12#

D~E!D~E1S!F12E
E

E1S

D~ t !dtG ~N2 i !

3F E
E

E1S

D~ t !dtG ~ i21!

dS dE. ~22!

Integrating overE and normalizing the resulting expressio
we obtain

p~ i !~S!5CE
2`

1`

D~E!D~E1S!F12E
E

E1S

D~ t !dtG ~N2 i !

3F E
E

E1S

D~ t !dtG ~ i21!

dE, ~23!

whereC is the normalization factor. In spite of its involve
appearance, this equation is easy to investigate. For exam
considerp(1)(S), which is written as
r

l

w

-
ect

s-

ls

b-

le,

p~1!~S!5N~N11!E
2`

1`

D~E!D~E1S!

3F12E
E

E1S

D~ t !dtG ~N21!

dE. ~24!

It is easy to see that ifD(E) is substantially larger than zer
on an interval j, then due to the factor
@12*E

E1SD(t)dt# (N21), p(1)(S) will also be substantially
larger than zero on a scale ofj/N. If S!1, in theN→`
limit we can expand the integrand to obtain

p~1!~S!5N~N11!(
i50

1`

~21! i
~SN! i

i ! E
2`

1`

Di12~E!dE.

~25!

From Eq.~25! it can also be deduced that the scale on wh
p( i )(S) is substantially greater than zero isO(1/N). Further-
more, it is clear from Eqs.~23! and ~25! that P( i )(S) is de-
termined by the values of a set of definiteintegrals of the
density of states distribution,D(E), and its powers rathe
than the specific details of the level distribution itself.

How sensitively doesp(1)(S) depend onD(E)? Consider
two completely different models specified byD1(E)
5exp(2E) with EP@0,1`#, and D2(E)5@(d11)/
E0
d11#Ed with EP@0,E0# andd.0. Using Eq.~25! we can

explicitly compute the nearest neighbor spacing distribut
p(1)(S) for the two models. It is easy to show that bo
models give the same form ofp(1)(S) for large values of the
parameterd. Furthermore, even ford;O(1) the difference
is only ;(d11)/d. The fact that the two chosen forms o
D(E) are considerably different from one another shows t
different models described by different forms ofD(E) can
have similar nearest energy level spacing distributio
Hence they can have similar relaxation times as specified
Eq. ~21! in the appropriate temperature range.

IV. A MORE GENERAL CASE

In Sec. III we considered the case in the absence of le
degeneracy. In that case the relaxation time can be expre
in terms of the level spacing distributions. However, wh
some of the energy levels are degenerate, we were in gen
not able to write Eq.~17! in a simple form like Eq.~21! in
terms of the level spacing probability,p( i )(S). In addition if
the degeneracygX of the energy levels rises exponentially
the number of the energy level increases we cannot neg
the h2 term even if the temperature is much smaller th
DE0. In this more general case, the level degeneracies
the energetics will compete to control the relaxation. Th
we expect the relaxation timet to have a nonmonotonic
behavior as the temperature is changed. In particular, a c
acteristic temperatureTf is found that roughly separates th
relaxation regime, which is controlled by energetics and
regime controlled by entropy.

A. The characteristic temperature

We now examine the special case of level degenera
which is approximately realized in protein spectra@7# where
gX;gX and g is a constant greater than unity in this ca
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55 7359RELAXATION IN A PERFECT FUNNEL
local free energyFi equalsFi5Ei2 i lng. In this case it is
easy to show, using Eq.~17!, that

t5h11h25SN1 (
i51

N21 E
0

1`

p~ i !~S!expF i lng2
S

TGdSD

2

(
i51

N

Zi
2exp~Fi /T!

Z0
.

It is easy to show that theh2 term as a whole scales a
exp@N(lng2Ū/T2E0 /NT)# for temperaturesT.Ū/ lng, and
the temperature at which this term becomes order unit
given byTf;(Ū1E0 /N)/ lng, which is comparable with the
average level spacing and becomes independent of
ground state energyE0 as N approaches infinity. For
T.Tf , uh2u is a rapidly increasing function ofN and at
T;Tf the two termsh1 andh2 become comparable.

Our results show that the relaxation time of the mo
involves competition between the two termsh1 andh2. The
fact thatuh1u becomes comparable withuh2u at Tf implies a
change of behavior as temperatureT is swept acrossTf . To
gain further intuition concerning the behavior of the syst
atT5Tf , we examined the limit for which all theN levels in
the quasicontinuous part of the spectrum are equidistant
U is the energy difference between any two adjacent lev
Again letDE0 be the distance between the native state
the lowest energy of the quasicontinuous part of the sp
trum. The equilibrium probabilities of each level will the
become

P05
exp~DE0 /T!

exp~DE0 /T!1~KN21!/~K21!

and

Pi5
Ki

exp~DE0 /T!1~KN21!/~K21!
,

whereK5exp(lng2U/T)5exp@lng(12Tf /T)#. Here we have
definedTf5U/ lng. BecauseN is large, this expression fo
K together with the expressions forP0 andPi above shows
that for T,Tf the population of the energy levels will b
given by P0;1 andPi!P0 for all iP$1,N%. The equilib-
rium state of the system is then the ground state of our s
trum. For T.Tf , on the other hand,Pi!Pi11 for all i
P$0,N21%, so that the equilibrium state will be shifted t
the upper part of the quasicontinuous spectrum. Hence
T,Tf or T.Tf the equilibrium state of the system is rel
tively well defined. In the case whenT;Tf all the levels in
the spectrum become almost equally probable and he
large fluctuations can be expected. From the kinetic poin
view, this means that atT;Tf the fluctuations lead to slow
relaxation and thus large values oft. In this sense this be
havior is similar to the well-known ‘‘critical slowing down’’
found for critical phenomena. From this argument it follow
that forT;Tf one should expect the occurrence of a ma
mum in the relaxation time of a system. Finally we note th
is

he

l
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the characteristic temperature can also be obtained by
convergence criterion for the series of Eq.~11!, namely,
a0R151.

We may conclude from our discussions that as soon
our system has energy levels with increasing degenera
there exists a temperature scaleTf that is determined by the
average level spacing of the spectrum and the degene
parameterg. Close toTf the tendency of increasing entrop
overcomes the tendency of relaxing into a state with low
energy, and this leads to a sharp increase in the relaxa
time of our system~see below for numerical calculations!.
Thus we expect a change in the behavior of the relaxatio
temperature is varied by crossingTf . In this sense, the char
acteristic temperatureTf can be regarded as the ‘‘foldin
temperature.’’ This is indeed what is observed in Ref.@7# for
situations similar to that discussed in the last paragraph.
merical results for this case will be presented in the n
subsection.

For T!Tf , we can again neglect theh2 term, and the
relaxation time can be expressed as

t5t rel;N1 (
i51

N21 E
0

1`

p~ i !~S!expF i lng2
S

TGdS. ~26!

Similar to the discussion in the last section, it is clear that
the temperature increases from zero toTf , t becomes in-
creasingly dependent on the higher order energy level s
ing distributions. However, whenT;0, t is only determined
by the nearest neighbor spacing distributionp(1)(S). Thus
the relaxation at very low temperatures is still generic in
sense of the discussion in the last section, namely,t is in-
sensitive to the density of statesD(E).

For proteins in general, it is reasonable to assume that
number of levels is large, i.e., thatN→`. Then the charac-
teristic temperatureTf is of the order ofŪ/ lng. In order to
examine higher temperatures, we first considerT.Tf and
theh1 term as given by Eq.~26!. In this case the exponentia
in the integrand of Eq.~26! is larger for larger values of the
summation indexi . Therefore forT.Tf , only higher order
energy level spacing distributionsp( i )(S) play a substantial
role. However, as mentioned above,p( i )(S) approaches a
Gaussian for largei and hence theh1 part of the relaxation
time again becomes generic forT.Tf . In addition, it is easy
to see that the leading contribution in theh2 term is due to
the difference in energies between the highest and the low
energy levels forT.Tf and is of the order of exp(N^S&/T).
Since this also defines quite general properties of a gi
model, we expect weak model dependence for theh2 term as
well. Hence we conclude that above the characteristic te
perature, the relaxation time is only weakly dependent on
detailed features of a given model.

The major model dependence is expected in the ra
0!T&Tf , while Tf itself is determined by the degenerac
parameterg and average level spacing. The striking featu
of the current case is that asT reachesTf there is an increase
in the dependence oft on the higher order energy leve
spacing distribution: at very lowT it is p(1)(S) that deter-
minest, while aboveTf it is the higherp( i )(S) that is re-
sponsible. The important conclusion is that it is possible
different models that correspond to different density of sta
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D(E) to have similar spacing distributionsp(1)(S). If this is
the case the folding time is weakly sensitive to the details
a given model in the lower temperature rangeT!Ū for the
nondegenerate models andT!Tf for the degenerate models

B. Numerical results

Although we have obtained all our results analytically,
is useful to obtain some numerical data as this gives con
erable intuition about the relaxation kinetics of the mod
studied here. For this purpose, we employ the model of R
@7#. In particular we assume that it hasN energy levels with
equal nearest neighbor spacingsU in its quasicontinuous par
and DE0 below is the ground state. We assumeDE0@U.
The degeneracy of the quasicontinuous part is given
g i21, wherei is the index of energy level. In the calculation
we usedN5100, U51, and the energy gap between t
ground state and the bottom of the quasicontinuous par
the spectrumDE0512.

Then from our general result given by Eq.~17!, the relax-
ation time can be easily calculated and we obtain, for
whole temperature range,

t5N
KN21

K21
2KSKN21

K21 D 8

2(
i51

N SKN2 i1121

K21 D 2Ki21
a0

11a0~K
N21!/~K21!

.

~27!

HereK[g exp(2U/T) and the prime means differentiatio
with respect toK. A simpler expression can be obtaine
when the limitN→` is taken.

FIG. 2. Logarithm of the relaxation timet as a function of
temperatureT for various degeneracy parametersg as indicated by
the numbers near the curves. The unit ofT is the level spacingU,
and an arbitrary unit is set fort. The solid squares were compute
from a direct numerical inversion of the matrix (M2a0dM ) of Eq.
~9! followed by a calculation of the trace of (M2a0dM )21. The
solid lines were calculated using the analytical form of Eq.~17!.
Clearly these two methods give exactly the same answers thro
out the whole temperature range.
f

t
d-
l
f.

y

of

e

The relaxation timet as a function of temperature fo
various degeneracy parametersg is shown in Fig. 2. We
computedt in two ways: either from a direct numerical in
version of the matrix (M2a0dM ) of Eq. ~9! and then find-
ing its trace, or by using the analytical form of Eq.~17!.
Figure 2 shows that these two methods give exactly the s
results throughout the whole temperature range, justify
the mathematical procedure that led to Eq.~17!. Several ob-
servations are in order. First, when the energy levels
nondegenerate, i.e., wheng51, there are no entropic effect
in the model and the system simply rolls down the perf
funnel landscape in the relaxation process. In this case t
is no characteristic temperatureTf and t is completely de-
termined by the energy level spacing distribution, as d
cussed before. Secondly, for cases with increasing level
generacies, i.e., forg.1, the relaxation time shows th
expected maximum. Also the position of the maximum
exactly at the characteristic temperatureTf ~see below!. The
behavior is consistent with that reported in Ref.@7#. Finally,
the ‘‘transition’’ at Tf becomes sharper asg is increased.
This is expected, as it is similar to the situation that occurs
a finite system where a thermal phase ‘‘transition’’ becom
sharper when the degree of freedom is increased.

In Fig. 3 the characteristic temperature as obtained fr
Tf'U/ lng1DE0 /N lng is shown as a function of the degen
eracy parameterg. From this expressionTf decreases mono
tonically as g is increased, which must be true becau
higher degeneracies of the energy spectrum lead to hig
entropies involved. The data points in this figure were tak
from the peak positions of Fig. 2 and are in good agreem
with the theoretical definition. Hence we conclude thatt
takes maximum values at the characteristic temperatureTf .

C. A discussion on the effect of roughness

So far our analysis is rigorous when the energy landsc
is a perfect funnel in the absence of roughness. Includ

h-

FIG. 3. Characteristic temperatureTf as a function of the level
degeneracy parameterg. The unit ofTf is the level spacingU. The
solid line is obtained fromTf'U/ lng1DE0 /N lng. The solid
squares in this figure correspond to the temperatures at which
relaxation time achieves its maximum, i.e., the peak positions
Fig. 2. These two prescriptions give nearly the same values
Tf .
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55 7361RELAXATION IN A PERFECT FUNNEL
arbitrary roughness will make the problem essentially
solvable analytically. However, under the assumption t
the roughness is small, our analysis can be extended to
mate the effects of it. In this section we will not attempt
rigorous treatment of the influence of roughness on the p
mer dynamics. Rather, we will specify in what way the r
sults of our theory will be modified if roughness is include
Our analysis follows the work of Leite and Onuchic@17#.

The energy landscape roughness can be modeled@17# by
a distribution of states at a given value of the reaction co
dinateX. The roughness is considered small if the width
the distribution is smaller than the average energy le
spacing in the spectrum. Then, each energy levelE(X)
considered so far can be thought of as being ‘‘smeare
out by an energy probability distributiong(X,E)
51/@2pdE(X)2#1/2exp$2@E2Ē(X)#2/2dE(X)2%. Here
dE(X) characterizes the ‘‘strength’’ of the roughness or t
width of the energy band corresponding to a particular va
of X. For this roughness model, following Ref.@17#, a useful
concept that arises is a coordinate-dependent phase tran
@17#. After the introduction of small roughness, the narro
band of states withindE(X) can be considered to be a su
system with its own dynamics. This consideration predi
@17# that for an energy band with coordinateX there is a
critical temperature Tc(X)5dE(X)/@2lnV(X)#1/2 where
V(X) is a number of conformations corresponding to t
level at X. If T<Tc(X) for a particularX, the band at
Ē(X) will behave in such a way that the dynamics inside t
band is glasslike. This means that the system will tend to
frozen in a few low lying states of this band while relaxin
inside it. This effect will have an important influence on t
relaxational dynamics. In the case of protein folding w
model V(X);gX, and therefore Tc(X)5dE(X)/
@2X lng#1/2, whereX50,1,2,. . . .

AlthoughdE may depend explicitly onX, let us first con-
sider the limiting case whendE is a constant over the spec
trum. In this case for system temperatu
T<dE/(2Xlng)1/2 there areI f5(dE/T)21/2lng low lying
energy bands with ‘‘glasslike’’ dynamics. The lower th
temperature, the more ‘‘frozen’’ bands would be in the s
tem. As the global dynamics involves a total number of e
ergy states that is proportional to( i

Ng i5gN11/(g21), a
‘‘global’’ phase transition temperature can be estimated,
lowing Ref.@17#, asTc

g;dE/(2Nlng)1/2 whereN is the num-
ber of energy bands (N5max$X%). It is important to com-
pare this temperature scale with the folding temperat
discussed previously,Tf;Ū/ lng. The number of ‘‘frozen’’
levels at the folding temperature isI f;(dE/Ū)2lng/2
5Tc

gN1/2/Tf . This number can serve as a criterion for t
definition of roughness ‘‘strength.’’ One can easily see tha
the roughnessdE&Ū, then I f;1. We thus conclude tha
only a few low lying energy bands withX;1 are frozen at
Tf . In this case the results derived from a perfect fun
should be applicable for temperaturesT;Tf , and the relax-
ation kinetics can be slowed down in the lower part o
spectrum near the ground state.

The above discussion is for a constantdE and more real-
istically there isX dependence of this quantity. For prote
-
t
sti-

y-
-
.

r-
f
l

’’

e

ion

s

s
e

-
-

l-

e

if

l

models it is natural to use the measure of compactness,
as the total number of nearest contacts, to specify the en
states. IfCL is the maximum number of contacts for a pol
mer with L monomers, then we may defineCL2X to give
the total number of contacts at energyE(X). It is reasonable
to assume that for a structure with a larger number of c
tacts, more interaction parameters are involved in compu
the energy. In general for a given distribution of these p
rameters, the energy bandwidthdE is thus larger. For this
reason we expect a decreasingdE(X) asX is increased~al-
though the level degeneracygX is increasing!. Hence the
validity of the perfect funnel results can be assessed by u
the largestdE(X) appropriate to the lower part of the spe
trum and the discussion of the last paragraph.

V. SUMMARY

This work was motivated by a particular protein foldin
scenario based on a funnel-like energy landscape. We s
ied the relaxational behavior when a system possesses a
fectly smooth energy funnel. Our model is specified by
density of statesD(E) for the quasicontinuous part, and
very low ground state levelE0. The levels of the quasicon
tinuous part may have exponentially increasing degenera
characterized by a degeneracy parameterg. Because the fun-
nel is smooth, the relaxation is very simple and can be
tained by using Metropolis rates. Indeed, the problem
been solved in closed form for the whole temperature ra
in the absence of roughness.

We found that the dependence of the relaxation timet on
the energy level and the level spacing distributions of
models displays three main types of behavior depending
the temperatureT. In the case where the energy levels a
nondegenerate, a general formula can be obtained rela
t to the level spacing distribution. Becauset is largely
speaking determined by the nearest level spacing distr
tion, which we have shown to be only weakly dependent
D(E), we conclude that the relaxation behavior can be s
to exhibit ‘‘universal’’ features. In the degenerate cas
which is more realistic for protein models, a characteris
temperatureTf is found that separates the relaxation regim
dominated by energetics or by entropic effects. Hence in
senseTf can be thought of as a ‘‘folding temperature’’ fo
the model studied here. We found thatt is weakly dependen
on the specific density of states of a given model ifT!Tf

while becoming more and more model sensitive asT ap-
proachesTf . Again, atT.Tf the system becomes almo
insensitive to the detailed features ofD(E). AcrossTf the
relaxation time shows a maximum, indicating the ‘‘foldin
transition,’’ in agreement with the earlier model of Zwanz
@7#. A possible experimental study of the relationship b
tween the energy level distribution and folding kinetics
examined by our model would involve a systematic study
several proteins using a combination of thermodynamic te
niques such as calorimetry@16# and folding assays.

The discussion presented here is only valid for a perf
funnel-like energy landscape, i.e., that of a ‘‘good’’ prote
sequence. The connection to a particular model is thro
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the density of statesD(E), which can always be obtaine
numerically. If small amount of roughness is added via
finite width of the energy state distribution for a particul
reaction coordinateX, the validity of the perfect funnel re
sults can be examined following the approach of the rece
published work of Ref.@17#. In general, our theory correctl
describes the kinetics of the model system including rou
ness in a tempearture rangeT.N1/2Tc

g : below this tempera-
ture kinetics slows down by the roughness and appro
glassylike dynamics atT;Tc

g . As discussed in the last sec
tion, Tc

g is small for small amount of roughness~small
dE).

Finally we comment that while our work was motivate
by the protein folding problem, the model is, however, on
specified by the density of states and relaxation in a per
funnel with a low lying ground state. Thus the formulas d
rived here are applicable to any other situations wher
similar arrangement applies. On the other hand, as fa
protein folding is concerned, the model studied here p
sesses many features of more realistic models.
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APPENDIX

In this Appendix we derive Eq.~5!. From matrixA of Eq.
~3!, we obtain matrixM by deleting the first row and firs
column. HenceM[L1dL can be written as
a

ly

-

h

ct
-
a
as
s-

-
s-
c-
e
of

M[I 21 1 0 0 •

0 21 1 0 •

0 0 21 1 •

0 0 0 21 •

• • • • •

I
1I 2a1 0 0 0 •

a1 2a2 0 0 •

0 a2 2a3 0 •

0 0 a3 2a4 •

• • • • •

I . ~A1!

It can be verified that matrixL21 takes a triangular form
with all the upper right elements equal to21. To find
M21, we seek for a series formM215( i50

1`Si . The proper
expressions of matricesSi are obtained by using the equalit
M21M5I where I is the unit matrix. Expansion of this
equality gives (( i50

1`Si)(L1dL)5I . Gathering terms in
equal powers ofdL we obtain the solutionS05L21 and
Si5(21)i(S0dL) iS0.

The quantityS0dL is obtained by a direct multiplication

S0dL5I 0 0 0 0 •

a1 0 0 0 •

0 a2 0 0 •

0 0 a3 0 •

• • • • •

I . ~A2!

This is a triangular matrix with an empty diagonal. It is we
known that for anyN3N triangular matrix with an empty
diagonal, thei th power of this matrix gives a zero matrix
i>N. Hence we conclude that our series expansion ofM21

is, in fact, a finite series. Summing theN21 nonzero terms
we obtain the result
M215I 1 0 0 0 •

a1 1 0 0 •

a1a2 a2 1 0 •

a1a2a3 a2a3 a3 1 •

• • • • •

I L2152I 1 1 1 1 •

a1 11a1 11a1 11a1 •

a1a2 a21a1a2 11a21a1a2 11a21a1a2 •

• • • • •

• • • • •

I . ~A3!

This gives the result of Eq.~5!. One can easily verify this result by direct multiplication to confirmMM215I .
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