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We demonstrate that the ratio of group to phase velocity has a simple relationship to the orientation of the
electromagnetic field. In nondispersive materials, opposite group and phase velocity corresponds to fields that
are mostly oriented in the propagation direction. More generally, this relationship �including the case of
dispersive and negative-index materials� offers a perspective on the phenomena of backward waves and
left-handed media. As an application of this relationship, we demonstrate and explain an irrecoverable failure
of perfectly matched layer absorbing boundaries in computer simulations for constant cross-section
waveguides with backward-wave modes and suggest an alternative in the form of adiabatic isotropic absorbers.
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I. INTRODUCTION

Recent years have seen a renewed interest in “left-
handed” media in which the phase velocity �vp� and group
velocity �vg� of waves are antiparallel. Such media include
theoretical negative-index �� ,��0� media and their
metamaterial realizations �1,2�, wavelength-scale periodic
media that mimic some qualitative features of negative-index
media �3–5� while not having a strictly well defined vp �6�,
and certain uniform cross-section positive-index waveguides
with “backward-wave” modes �7,8�. In this Rapid Commu-
nication, we derive a fundamental relationship between vp,
vg, and the orientation of the fields for any medium
���x ,y� ,��x ,y��, where z invariance ensures that the phase
velocity in the z direction is unambiguously defined. In par-
ticular, we prove that, for nondispersive materials,

vg = vp�f t − fz� , �1�

where f t and fz are the fractions of the electromagnetic �EM�
field energy in the transverse �xy� and longitudinal �z� direc-
tions, respectively. Thus, the appearance of backward-wave
modes �vpvg�0� in nondispersive media coincides with the
fields being mostly oriented in the longitudinal direction
�that is, fz� f t�. The situation of negative-index media in-
volves material dispersion and requires a modified equation
discussed below. As an application of Eq. �1�, we identify
and explain a fundamental failure of perfectly matched layers
�PMLs�, widely used as absorbing boundaries in simulating
wave equations �9�, for backward-wave structures. In par-
ticular, the stretched-coordinate derivation of PML suggests
that such waves should be exponentially growing in the
PML, and we explain this physically by pointing out that
PML is an anisotropic “absorber” with gain in the longitudi-
nal direction, which dominates for backward-wave modes
due to Eq. �1�. In inhomogeneous backward-wave media,
unlike homogeneous negative-index media �10,11�, we argue
that the only recourse is to abandon PML completely in favor

of adiabatic non-PML absorption tapers �12� �unrelated to
the failure of PML in periodic media described in our previ-
ous work �12��.

In what follows, we first review the fixed-frequency
eigenproblem formulation of Maxwell’s equations �13,14�
and then use this to derive Eq. �1� �an immediate precursor
of which can also be found in our book �14��. We discuss the
case of dispersive and negative-index media. Then, we re-
view important cases of positive-index nondispersive geom-
etries with backward-wave modes and argue that PML irre-
deemably fails in such geometries. This failure can be
physically understood in light of Eq. �1�. We close by pro-
posing a non-PML alternative for such cases.

II. RELATING GROUP AND PHASE VELOCITIES

A. Notation and review of the generalized Hermitian
eigenproblem

Employing Dirac notation, Maxwell’s equations with
time-harmonic fields of frequency � can be cast �exactly� in
the following form �13,14�:

Â��� = − i
�

�z
B̂��� , �2�

where ��� is the four-component state vector,

��� 	 
Et�x,y,z�
Ht�x,y,z�

�e−i�t, �3�

containing the transverse fields Ex ,Ey ,Hx ,Hy, and the opera-

tors Â and B̂ are given by

Â 	���/c −
c

�
�t �

1

�
�t� 0

0 ��/c −
c

�
�t �

1

�
�t�

�4�

�where � and � are the relative permittivity and permeabil-
ity� and*ploh@mit.edu
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B̂ 	 
 0 − ẑ�

ẑ� 0
� =�

1

− 1

− 1

1
 = B̂−1. �5�

Moreover, under the inner product

������ 	 � Et
� · Et� + Ht

� · Ht�, �6�

both Â and B̂ are Hermitian.
Specializing to the case of a z-uniform material allows us

to choose modes with fixed propagation constant 	, i.e.,
��� = ei�	z−�t��	� , �7�

where �	� is z uniform �6�. In this case Eq. �2� immediately
reduces to

Â�	� = 	B̂�	� , �8�

which is a generalized Hermitian eigenproblem in 	.

B. Case of continuous z-translational symmetry

The group velocity vg can be derived from Eq. �8�. View-

ing Â as an operator parametrized by �, we know by the
Hellmann-Feynman theorem �6� that the eigenvalues 	 of
Eq. �8� vary with � according to

1

vg
=

�	

��
=

�	�
�Â

��
�	�

�	�B̂�	�
=

�	�
�Â

��
�	�

1

	
�	�Â�	�

. �9�

Plugging in Eqs. �4� and �6�—assuming that the material is

nondispersive so that Â has only the explicit � dependence

and �Â
�� simplifies—the numerator of Eq. �9� evaluates to

1

c
� Et

� · 
�Et +
c2

�2�t �
1

�
�t � Et�

+
1

c
� Ht

� · 
�Ht +
c2

�2�t �
1

�
�t � Ht� . �10�

Splitting the first integral into two summands, we obtain an
���Et�2 contribution from the first term; as for the second,
integrating by parts gives

� c2

�2 ��t � Et�� ·
1

�
��t � Et� =� ��Hz�2, �11�

where we used the relation �t�Et= i �
c �Hzẑ in the last step.

Simplifying the second integral in an analogous manner and
putting everything together, we find

�	�
�Â

��
�	� =

1

c
� ��Et�2 + ��Ht�2 + ��Ez�2 + ��Hz�2. �12�

By a similar computation, we may rewrite the denominator
of Eq. �9� as

1

	
�	�Â�	� =

�

c	
� ��Et�2 + ��Ht�2 − ��Ez�2 − ��Hz�2. �13�

Thus

vg =
�

	

� ��Et�2 + ��Ht�2 − ��Ez�2 − ��Hz�2

� ��Et�2 + ��Ht�2 + ��Ez�2 + ��Hz�2
, �14�

from which Eq. �1� follows.

C. Subtleties with dispersive media and negative index
materials

In deriving Eqs. �1� and �14�, we assumed that the con-
stituent materials were nondispersive. If � and � are � de-
pendent but we assume that absorption loss is negligible �so

that the problem is still Hermitian�, then �Â /�� in Eq. �9�
has additional terms that change the denominator of Eq. �14�
to � d��

d�
�E�2 +

d��

d�
�H�2, �15�

which is precisely the energy density of the EM field in a
dispersive medium with negligible loss �15,16�. Because the
denominator has changed while the numerator is unchanged,
one can no longer interpret the ratio as f t− fz. An interesting
example of such a case is a negative-index metamaterial, in
which � and � are negative in some frequency range with
low loss �1,2�. In this case, the numerator of Eq. �14� flips
sign, while the new denominator �Eq. �15�� is still positive
�leading to a positive energy density �2,16��. Hence in a dis-
persive negative-index medium a purely transverse field
�Ez=Hz=0� has opposite phase and group velocity. A nondis-
persive negative-index medium is not physical �it violates
the Kramers-Kronig relations �15,16��; the definition of vg in
such a case is subtle and somewhat artificial �naively, the
energy density is negative� and is not discussed here.

An interesting application of Eq. �1� is to backward-wave
waveguides made of positive-index materials. For example, a
hollow metallic waveguide containing a concentric dielectric
cylinder was shown to support backward-wave modes �7�.
More recently, the same phenomenon was demonstrated in
all-dielectric �positive-index nondispersive� photonic-crystal
Bragg and holey fibers and in general can be explained as an
avoided eigenvalue crossing from a forced degeneracy at 	
=0 �8�. An example of such a structure is shown in the inset
of Fig. 1, which shows the cross section of a Bragg fiber
formed by alternating layers of refractive indices nhi=4.6
�thickness 0.25a� and nlo=1.4 �thickness 0.75a� with period
a. The central high-index core has radius 0.45a and the first
low-index ring has thickness 0.32a. For this geometry, one of
the guided modes �with angular dependence eim
 and m=1�
has the dispersion relation ��	� shown in the inset of Fig. 1:
at 	=0, d2� /d	2�0, resulting in a downward-sloping
backward-wave region with vgvp�0. As the index of the
core cylinder is varied, this curvature can be changed from
negative to positive in order to eliminate the backward-wave
region. Equation �1� tells us that the backward-wave region
coincides with fields that are mostly oriented in the z �axial�
direction.

A further consequence of Eq. �1� appears if we consider
the problem of terminating a waveguide like the one in Fig.
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1 �inset� in a computer simulation. A standard approach is to
terminate the waveguide with a perfectly matched absorbing
layer, which is an artificial absorbing material constructed so
as to be theoretically reflectionless �9�. PML is reflectionless
because it corresponds merely to a complex coordinate
stretching z→ �1+ i�

� �z so that propagating waves ei	z are
transformed into exponentially decaying waves ei	z−�z/vp for
some PML strength �. From this perspective, an obvious
problem occurs for backward waves: if vp�0 for vg�0,
then a +z-propagating wave �vg�0� will undergo exponen-
tial growth for ��0. �This is entirely distinct from the fail-
ure of PML in a medium periodic in the z direction, which in
that case is due to the nonanalyticity of Maxwell’s equations
�12� and leads to reflections but not instability.� In a homo-
geneous backward-wave medium, this problem can be
solved merely by making ��0 in the negative-index fre-
quency ranges �10,11�. This solution is impossible in the case
of Fig. 1 �inset�, however, because at the same � one has
both forward and backward waves—no matter what sign is
chosen for �, one of these waves will experience exponential
growth in the PML.

Precisely this exponential growth is observed in Fig. 1.
We simulated the backward-wave structure of Fig. 1 �inset�
with a finite-difference time-domain �FDTD� simulation in
cylindrical coordinates �9,17�, terminated in the z direction
with PML layers. Both the forward- and backward-wave
modes were excited with a short-pulse current source, and
the fields in the PML region after a long time were fit to an
exponential in order to determine the decay rate. Figure 1
plots this decay rate as a function of the curvature
�2� /�	2 �	=0 as the core-cylinder index is varied from 2.6 to
5.0. The appearance of negative curvature, which indicates
the appearance of a backward-wave region, precisely coin-
cides with the decay rate changing sign to exponential
growth.

This exponential growth is fully explained by the
coordinate-stretching viewpoint of PML, but physically it
may still seem somewhat mysterious: PML can also be
viewed as an artificial anisotropic absorbing medium �9�, so
how can an absorbing medium lead to gain? The answer lies
in the anisotropy of PML: as we review below, PML is ac-
tually a gain medium in the z direction, and in fact Eq. �1�
precisely explains how backward waves cause the z principal
axis of the PML to dominate and produce a net gain. In
particular, we look at the case where � is small so that we
can analyze the effect of the PML with perturbation theory.

Using the e−i�t time convention as above, a z-absorbing
PML for an isotropic material is obtained by multiplying �
and � by the �anistropic� tensor �9�

�
1 +

i�

�

1 +
i�

�


1 +
i�

�
�−1 . �16�

To first order in �, this changes � and � by

�� �
i��

� �1

1

− 1
, �� �

i��

� �1

1

− 1
 . �17�

Note the −1 in the z axis, which flips the sign of the imagi-
nary part and hence corresponds to gain if the xy axes are
loss. From standard perturbation theory, the first-order
change in � resulting from perturbations �� and �� is given
by �18�

��

�
� −

� E���E + H���H

� ��E�2 + ��H�2
. �18�

Substituting Eq. �17�, we find that

�� � − i�
� ��Et�2 + ��Ht�2 − ��Ez�2 − ��Hz�2

� ��Et�2 + ��Ht�2 + ��Ez�2 + ��Hz�2
= − i��f t − fz�

= − i�
vg

vp
�19�

upon applying our identity Eq. �1�.
The ramifications for PML behavior are now immediately

apparent: turning on a small � leads to an additional time-
dependent exponential factor

exp
−
vg

vp
· �t� . �20�

In the usual case in which group and phase velocities are
oriented in the same direction, the overall rate constant is
negative and this causes absorptive loss in the PML. In the
case of backward waves, however, the ratio vg /vp is nega-
tive, and thus the overall rate constant is positive, i.e., PML
produces gain. Physically, we can now understand the ratio
vg /vp as determining whether the fields are mostly transverse
or mostly longitudinal and hence whether the PML loss �xy
axes� or gain �z axis� dominates. Forward waves are mostly
transverse and hence ordinary PML is lossy. �Waveguides
with backward waves also possess complex-	 evanescent
waves �8�, and we believe that these may also have gain in
the PML; but as their appearance always coincides with the
appearance of backward-wave modes we focus on the insta-
bilities due to the latter.�
D. Numerical results, modifications, and alternatives to PML

With the understanding that the standard formulation of
PML fails for backward waves, we now turn to a discussion
of what can be done instead. As pointed out above, previous
corrections for left-handed media �10,11� are inapplicable
here because one has forward and backward waves at the
same �. Since the reflectionless property of PML fundamen-
tally arises from the coordinate-stretching viewpoint and
gain is predicted by coordinate-stretching above, we are led
to the conclusion that PML must be abandoned entirely for
such backward-wave structures. The alternative is to use a
scalar absorbing material, e.g., a scalar conductivity �, which
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is absorbing for all field orientations and therefore cannot
lead to gain �unlike our previous work where an anisotropic
“pseudo-PML” could still be employed �12��. At the inter-
face of such a material, however, there will be reflections.
Such reflections can be made arbitrarily small, however, by
turning on the absorption by a sufficiently gradual taper tran-
sition, similar to our approach for an unrelated failure of
PML �12�. Even for PML, numerical reflections due to dis-
cretization require a similar gradual � taper. In both cases,
the reflection R�L� goes to zero as the absorber thickness L is
made longer �and more gradual�, and the impact of PML
�when it works� is merely to multiply R�L� by a smaller
constant coefficient �12�. Even without PML, the rate at
which R�L� goes to zero can be made more rapid by reducing
the discontinuity in �: for example, if ���z /L�2 �for z�0�
then its second derivative is discontinuous at the transition
z=0 and R�L� consequently scales as 1 /L4, while if �
��z /L�3 then R�L��1 /L6. Figure 2 shows how a scalar con-
ductivity � can be used as a last-resort replacement for PML
in the backward-wave structure of Fig. 1 �inset�. The plot
shows the difference squared of the magnetic field at a test
point for absorber lengths L and L+1 �which scales as
R�L� /L2� �12� versus L for various conductivity profiles �.
Even with both forward and backward waves excited, the
reflection can indeed be made small for a sufficiently thick

absorber �albeit thicker than a PML for purely forward-wave
modes� and displays the expected scaling 1 /L2d+2 for �
��z /L�d �12�.

Colloquially, the term “left-handed medium” is some-
times applied to photonic-crystal structures with periodicity
on the same scale as the wavelength that mimic some quali-
tative feature of negative-index media, such as negative re-
fraction �3,4�. In such media, however, the phase velocity vp
is not uniquely defined �any reciprocal lattice vector can be
added to 	� �6�, so Eq. �1� is not directly applicable. It may
be interesting, however, to use Eq. �1� as the definition of vp
in periodic media, in which case it turns out that one obtains
a result similar in spirit to previous work that defined vp as a
weighted average of the phase velocity of each Fourier com-
ponent �5�.
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FIG. 1. �Color� Field decay rate within the PML vs curvature of
the dispersion relation at 	=0, showing onset of gain for vg�0 and
loss for vg�0. Inset: dispersion relation �of the first TE band� with
vg�0 region at 	=0 and cross section of the Bragg fiber.
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FIG. 2. �Color� Field convergence ��reflection /L2� vs absorber
length for various � ranging from linear ����z /L���z /L��� to quin-
tic ���z /L���z /L�5�. For reference, the corresponding asymptotic
power laws are shown as dashed lines. Inset: Bragg-fiber structure
in cylindrical computational cell with absorbing regions used in
simulation.
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