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We investigate the behavior of electromagnetic states associated with photonic crystals, which are under-
going rigid time-dependent translations in position space. It is shown, quite generally, that the Bloch wave
vectorq remains a conserved quantity and that an analogue of Bloch’s theorem for a time-dependent solution
of the states can be formulated. Special attention is focussed on time-dependent translations involving har-
monic rigid vibrations of the photonic crystal. Under these conditions it is shown how, and to what extent,
inter-band transitions can be induced between the various bands in a photonic crystal in a microwave regime.
In particular, a characteristic resonance transition time can be derived, which scales inversely with the ampli-
tude of vibration and interband frequency. Finally, it is argued that given all parameters other than Bloch wave
vector fixed, an interband transition time is minimized if the transition is made at a Bragg plane.

I. INTRODUCTION

The idea of using periodic dielectric materials to alter the
dispersion relation of photons1–5 has received widespread in-
terest and consideration because of numerous potential
applications.6 It has been shown by several authors7–9 that
passive elements such as waveguide bends, channel drop fil-
ters, mirror surfaces, etc. can be substantially improved if
constructed on the basis of photonic crystals. Recently, a
strong interest has developed for the incorporation of nonlin-
ear materials into photonic crystals. Investigations in the
framework of field dependent dielectric media have led to
several suggestions10–12on the possibility of constructing ac-
tive elements such as optical switches and on the realization
of dynamical effects such as second harmonic generation and
induced interband transitions in photonic crystals.

The idea of this paper is to demonstrate the possibility of
inducing interband transitions in photonic crystals using or-
dinary, linear field-independent media. To introduce a cou-
pling between the electromagnetic states of a photonic crys-
tal we employ rigid mechanical vibrations of the crystal with
a driving frequency� and an amplitude�. It will be shown
that in this setting, tuning the driving frequency to the fre-
quency of the interband transition leads to coupling of the
modes and an interband transition time that is inversely pro-
portional to both the amplitude of vibration and the interband
frequency. Experimentally, since the driving frequency
should be comparable to the frequencies of the photonic
modes, this method of inducing interband transitions should
be most relevant to the microwave region.

The outline of the paper is as follows. In Sec. II, we
describe a general approach for solving Maxwell’s equations
for general rigid time-dependent translations of a photonic
crystal. Section III, deals with setting up the correct bound-
ary conditions for the fields on the moving interface between
two dielectrics. In Sec. IV, we address a computational
scheme for obtaining the time-dependent population ampli-
tudes of the electromagnetic modes. In Sec. V, harmonic
vibrations of a photonic crystal are considered and resonant-
mode coupling and photonic interband transitions are dem-
onstrated. The interband transition time and its dependence
upon various system parameters is discussed in Sec. VI. Fi-

nally, in Sec. VII, we make some concluding remarks. In the
Appendix, we provide a detailed derivation of a modified
Bloch theorem for a photonic crystal undergoing rigid time-
dependent vibrations.

II. RIGID TRANSLATIONS OF A PHOTONIC CRYSTAL
AND THE MASTER EQUATION

We begin by deriving the time-dependent field equations
for the case of a translated photonic crystal. Starting with
Maxwell’s equations for a nonmagnetic material with a time-
and position-dependent dielectric constant we have:

�    H �x,t ��
����x,t �E �x,t �	

�ct
,

�1�

�    E �x,t ���
�H �x,t �

�ct
.

The equation for the magnetic field can be analyzed fur-
ther by manipulating the right-hand side:

�    H �x,t ��
���x,t �

�ct
E�x,t ����x,t �

�E�x,t �

�ct
,

1

��x,t �
�    H �x,t ��

���x,t �

�ct

��x,t �
E�x,t ��

�E�x,t �

�ct
,

�2�

�   � 1

��x,t �
�    H �x,t ����  � ���x,t �

�ct

��x,t �
E �x,t ��

��
   �E �x,t �

�ct
.

Substitution of the second of Maxwell’s equations from
Eq. �1� into the last equation of Eq.�2� gives a time depen-
dent version of the ordinary5 master equation:
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�   � 1

��x,t �
�    H �x,t ����

1

c2

�2H �x,t �

�t2

��  � ���x,t �

�ct

��x,t �
E �x,t �� . �3�

Let us now consider a photonic crystal translated with a
displacement�(t) as illustrated in Fig. 1, whereR is the
periodicity of the photonic crystal andR1 , R2 are the widths
of the slabs with dielectric constants�1 and�2 consequently.

For simplicity we focus on a one-dimensional�1D� pho-
tonic crystal but our analysis is valid in general. At a fixed
point in space, the dielectric constant is typically a discon-
tinuous function of time. We notice also that as soon asx

�(t)�Rl, x
�(t)�R1�Rl �boundaries between the
slabs of different�) wherel is any integer, the term

�  � ���x,t �

�ct

��x,t �
E �x,t ���0. �4�

Thus, the time dependent master equation reduces to a
stationary photonic crystal master equation�i.e., the master
equation for a photonic crystal at rest�

�   � 1

��x ��� t �	
�    H �x,t ����

1

c2

�2H�x,t �

�t2
, �5�

wherex
�(t)�Rl, x
�(t)�R1�Rl. We must now con-
sider what happens with the fields on the moving boundary
between two dielectrics.

III. RIGID TRANSLATIONS AND BOUNDARY
CONDITIONS ON THE INTERFACE OF TWO MOVING

DIELECTRICS

Let us consider a one dimensional interface between two
dielectrics as shown in Fig. 2.

Maxwell’s equations for each dielectric become

�
�H�x,t �

�x
�

���x,t �

�ct
E�x,t ����x,t �

�E�x,t �

�ct
,

�6�
�E�x,t �

�x
��

�H�x,t �

�ct
.

A dielectric medium which is a function of space and time
can be conveniently expressed as

��x,t ���1���2��1���x��� t �	, �7�

where�(x) is a standard step function. Thus, the time de-
rivative of the dielectric media can be derived from this form
of �(x,t) and becomes

���x,t �

�ct
����2��1���x��� t �	

�̇� t �

c
. �8�

Maxwell’s equations with the discontinuous term atx
��(t) can be satisfied if we assume discontinuous electric
and magnetic fields through the interface. Thus, choosing

E�x,t ��E1��E2�E1���x��� t �	,
�9�

H�x,t ��H1��H2�H1���x��� t �	

in the vicinity of the interface for the space and time deriva-
tives of these fields we obtain

�E�x,t �

�ct
���E2�E1���x��� t �	

�̇� t �

c
,

�E�x,t �

�x
��E2�E1���x��� t �	,

�10�

�H�x,t �

�ct
���H2�H1���x��� t �	

�̇� t �

c
,

�H�x,t �

�x
��H2�H1���x��� t �	.

Substitution of these derivatives into Maxwell’s equations
leads to the following equations for the boundary conditions:

FIG. 1. 1D photonic crystal with periodicityR rigidly translated
with a displacement�(t).

FIG. 2. 1D interface between two dielectrics displaced by�(t)
at time t.
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��H2�H1���x��� t �	���E2�E1�
�̇� t �

c
��x��� t �	
E1��E2�E1���x��� t �	�

�� �1���2��1��E2�E1���x��� t �	
�̇� t �

c � , �11�

�E2�E1���x��� t �	��H2�H1�
�̇� t �

c
��x��� t �	.

Integration in the intervalx���(t)�0;�(t)�0	 then gives

�H2�H1����2��1�
E1�E2

2

�̇� t �

c
�

�2��1

2
�E2�E1�

�̇� t �

c
,

�12�

�E2�E1���H2�H1�
�̇� t �

c
,

which can then be rewritten as

E2

E1
�

1�� �̇� t �

c
� 2

�1

1�� �̇� t �

c
� 2

�2

,

�13�

H2�H1�E1

��2��1�
�̇� t �

c

1�� �̇� t �

c
� 2

�2

.

We thus arrive at the conclusion that the solution of the
time-dependent master equation for a translated photonic
crystal is equivalent to solving the stationary photonic crystal
master Eq.�5� with the time dependent boundary conditions
�13�.

IV. COMPUTATIONAL METHOD
AND APPROXIMATIONS

In practical applications, the characteristic velocity of a
translated crystal is considerably smaller than the speed of
light. Thus,�̇(t)/c is a small parameter in our system. We
can also reason that if one is interested in inducing transi-
tions from one band of a photonic crystal to another by me-
chanical vibration, the driving frequency� inducing such a
transition should be comparable to the characteristic band
frequency�, thus, �̇(t)/c���/����/R, where R is a
spatial period of the crystal that is of the order of the char-
acteristic wavelength of an extended mode. This places us in
a regime where the amplitude of vibrations is necessarily
considerably smaller than a spatial period of a crystal and
thus perturbation theory is clearly applicable. As the velocity
of vibration is much smaller than the velocity of a propagat-
ing mode it is intuitive to expect that an instantaneous state
of the system can be thought of as being composed of a
superposition of modes for a stationary crystal but shifted by

an amount equal to the current displacement�(t). We can
put this assumption on a rigorous basis by employing a
modified Bloch theorem appropriate for a rigidly translated
photonic crystal. We prove�see the Appendix� that for the
case of a rigidly translated photonic crystal, a time dependent
solution of the electromagnetic fields still possesses a Bloch
symmetry

� Hq�x�R,t �

Eq�x�R,t � � �exp� iqR �� Hq�x,t �

Eq�x,t � � . �14�

Thus, we can expand the magnetic fieldH(x,t) in terms
of the shifted eigenmodesHq,�n

�x��(t)	 of the stationary
master equation and obtain

H�x,t �q� �
�n(q)

Cq,�n
� t �Hq,�n

�x��� t �	. �15�

Here, theCq,�n
(t) are the time-dependent band population

amplitudes�to be determined� and theHq,�n
(x) satisfy

�   � 1

��x �
�    Hq, �n 

�x ���
�n

2�q �

c2
Hq,�n

�x �. �16�

We note thatH(x,t)q satisfies the Bloch form of a solution
and that the choice of the initial values ofCq,�n

(0) and

Ċq,�n
(0) is made based on the boundary conditions. Thus,

with a proper choice ofCq,�n
(t), H(x,t)q is an exact solu-

tion of the time-dependent problem for the rigid translations
of a photonic crystal.

Let us now develop equations for the time dependent
population amplitudesCq,�n

(t).
We note from Eq.�16� that
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�  � 1

��x ��� t �	
�    Hq, �n 

�x ��� t �	�
�

�n
2�q �

c2
Hq,�n

�x��� t �	. �17�

In addition, the orthogonality of the modes gives

�Hq,�n
�x��� t �	�Hq�,�n�

�x��� t �	���n,n��q,q� . �18�

Substitution ofH(x,t)q into the stationary photonic crys-
tal master Eq.�5� and use of Eqs.�15�, �16�, and�17� leads to

�
q,�n(q)

Cq,�n
� t �Hq,�n

�x��� t �	
�n

2�q �

c2

��
1

c2 � �
q,�n(q)

C̈q,�n
� t �Hq,�n

�x��� t �	

�2 �
q,�n(q)

Ċq,�n
� t �

�Hq,�n
�x��� t �	

�t

� �
q,�n(q)

Cq,�n
� t �

�2Hq,�n
�x��� t �	

�t2 � . �19�

Now, using the orthogonality of theHq,�n
�x��(t)	

modes we can rewrite the above equation in the form

0�C̈q,�n
��n

2�q �Cq,�n
�2 �

q�,�n�(q�)

Ċq�,�n�

�� Hq,�n
�x��� t �		�Hq�,�n�

�x��� t �	

�t 

� �

q�,�n�(q�)

Cq�,�n�� Hq,�n
�x��� t �	

�	�2Hq�,�n�
�x��� t �	

�2t

 . �20�

Since theHq,n(x) are solutions of the stationary Master
equation for a crystal, they are the Bloch waves of a station-
ary Hamiltonian and therefore

Hq,�n
�x��� t �	�exp
iq�x��� t �	�Uq,n�x��� t �	,

�21�

whereUq,n�x��(t)	 is a periodic function with periodicity
R.

Given this particular form of theHq,�n
�x��(t)	, we can

express the transition matrix elements�Hq,�n
�x

��(t)	�
�Hq�,�n�
�x��(t)	/�t�� and �Hq,�n

�x

��(t)	�
�2Hq�,�n�
�x��(t)	/�t2�� in terms of integrals

over the derivatives ofUq,n�x��(t)	. To first order in�(t)
one can derive

� Hq,�n
�x��� t �		�Hq�,�n�

�x��� t �	

�t 

��� iq�n,n��M n,n��q �	�̇� t ��q,q� �22�

and

� Hq,�n
�x��� t �		�2Hq�,n��x��� t �	

�2t



��� iq�n,n��M n,n��q �	�̈� t ��q,q� , �23�

whereM n,n�(q) is an antihermitian transition matrix defined
as

M n,n��q ��� Uq,n	�Uq,n�
�x 


v

�24�

and the integral is taken over the volume of a unit cellv.
Thus, from Eqs.�22� and �23� intraband transitions are not
allowed in this formalism and only interband transitions are
possible.

Substitution of Eqs.�22� and�23� back into Eqs.�20� then
gives

C̈̄�2�̇� t �� iq�M �Ċ̄��D��̈� t �� iq�M �	C̄�0, �25�

where C̄��Cq,�0
(t),Cq,�1

(t), . . . 	 is a vector of mode
populations, andD is a diagonal matrix with squared natural
mode frequencies on the diagonal, i.e., diag(D)
���0

2(q),�1
2(q), . . . 	. Finally, we note that Eq.�25� is not

time reversal invariant, which is consistent with the fact that
Eq. �5� represents a driven system.

V. RESULTS FOR RIGID TRANSLATIONS
WITH A HARMONIC DISPLACEMENT

Let us now consider the special case of rigid vibrations
with a harmonic displacement

�� t ��� sin��t �. �26�

In this case, Eq.�25� for the time dependent population of
modesCq,�n

(t) can be easily analyzed. Rewriting�(t) as

�� t ���
exp� i�t ��exp��i�t �

2i
�27�

we notice that Eq.�25� allows a solution of the form

C̄� �
l���

��

Ā��l�exp� i���l��t	� �
l���

��

Ā���l�

�exp� i����l��t	. �28�

Here, the eigenvectorsĀ��l� and Ā���l� are to be de-
termined by substituting Eq.�28� into Eq.�25� and solving a
complicated matrix equation.13 Since we are dealing with
small� �and we know that���n(q) when��0	 the spec-
trum of the excited modes is not going to change much. Thus
the frequencies for the excited modes can all be approxi-
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mated by�excited���n(q)�l� wherel is any integer and
�n(q) are the normal frequencies of a stationary photonic
crystal.

As an example, let us consider the case of a 1D photonic
crystal with alternating dielectric slabs of width 0.8 and 0.2
and dielectric constants�1�1 and�2�13, respectively. For
simplicity, we setR�1 andc�1 and concentrate on the mid
zone wavevectorq��/2. The first three bands are easily
calculated and have frequencies�0(�/2)�0.8189,
�1(�/2)�3.3047, �2(�/2)�4.9659. For definiteness we
focus on exploring a possible interband transition from band
0 to band 1, and thus set�res�2.4857.

To investigate the time dependence of the excited states
of the system we perform the following simulation. Att
�0 we initialize our state to be band 0 and calculate the time
dependence of the band populations as we vibrate the crystal
with a frequency�. We then analyze the Fourier spectra of
the band populations.

Let us begin with the case���res . A Fourier analysis
of the time dependence of the populations for band 0 and
band 1 gives the spectra shown in Figs. 3 and 4, respectively.

One can see in Fig. 3 that harmonics of the form
��0(�/2)�l� are excited with��0(�/2) having the
dominant amplitude, which is in accordance with Eq.�28�.
Moreover, the excitations��0(�/2)�l� for �l��1 are so

small they are unresolvable in the figures. Excitations
��0(�/2)�� have Fourier components that are two orders
of magnitude smaller than the Fourier components of the
natural harmonics��0(�/2). As the driving frequency is
substantially smaller than the 0→1 resonant frequency, the
transition to band 1 is suppressed and the amplitudes of ex-
cited modes in band 1 are at least three orders of magnitude
smaller than the amplitudes of the��0(�/2) natural modes
in band 0. This is shown in Fig. 4. From the Fourier spec-
trum associated with band 1 one can see that the main har-
monics are at��1(�/2), ��1(�/2)��, and ��0(�/2)
��. The presence of the latter frequencies reflects a
‘‘memory’’ of the band from which the transition originated.

Let us now consider the case���res . Tuning the fre-
quency of vibration� to the interband frequency�res leads
to a strong interband coupling. After a characteristic transi-
tion time t transition the envelope of the amplitude of popula-
tion of band 1 gradually approaches the same order of mag-
nitude as the original population of band 0. This is shown in
Fig. 5.

The rapid oscillations correspond to the natural frequen-
cies of each band. Note that there is complete transfer at

intervals of about 60Rc . Fourier analysis of these spectra leads
to the results shown respectively in Figs. 6 and 7. As in

FIG. 3. Frequency spectrum of the population of band 0 atq
��/2 with ��0.01 and��0.2. Note the dominating natural fre-
quency harmonics with��0(�/2) and excitations of the form
��0(�/2)�l�.

FIG. 4. Frequency spectrum of the population of band 1 atq
��/2 with ��0.01, and��0.2. Natural frequency harmonics
��1(�/2) and their excitations��1(�/2)�l� are superimposed
on the excitations��0(�/2)�l� induced by the 0→1 transition.

FIG. 5. Plot of the time-dependent population amplitudes for
bands 0 and 1 atq��/2 as a function of timet for the 0→1
interband transition with��0.01, and���res . With these pa-
rameters the population of band 1 becomes comparable with the

population of band 0 att transition�60R
c .

FIG. 6. Frequency spectrum of the population of band 0 atq
��/2 with ��0.01, ���res . As in the case of the off-resonance
transitions the excitations in the band 0 are of the form
��0(�/2)�l�.
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the case of the off-resonance transitions, the general form of
the excitations is��0,1(�/2)�l� where the amplitudes of
the excitations with�l��1 are much smaller�at least one
order of magnitude� than the amplitudes of the modes with
the natural frequencies of the bands. Specifically, for band 0
�Fig. 6� it is clear that harmonics with the natural frequency
of the band��0(�/2) dominate the Fourier spectrum by
two orders of magnitude. Similarly, for band 1�Fig. 7� the
harmonics���0(�/2)��res	 and��1(�/2) coincide with
each other and dominate the Fourier spectrum by at least one
order of magnitude.

A natural issue to consider at this point concerns the in-
terband transition time at resonance. This is addressed in
detail in the next chapter.

VI. THE INTERBAND TRANSITION TIME

Since the amplitude of vibration plays the role of an in-
terband coupling constant, one would expect that the transi-
tion time should be proportional to the inverse of this cou-
pling constant. Doing standard time dependent perturbation
theory on Eq.�25�, with t transition defined to be the time
required for the population amplitude of band 1 to reach its
maximum, one obtains

t transition�
��0�1

�0��1

2�

��M 01��res
. �29�

Here, �M 01� is the absolute value of the transition-matrix
element defined in Eq.�24�. Since ��0�1/(�0��1) will
typically always be about 0.5 for a fairly wide range of
�1 /�0 we can approximatet transition for most practical pur-
poses as

t transition�
�

��M 01��res
. �30�

Note that this expression is also inversely proportional to the
matrix element and resonant frequency. We shall return to
examine this behavior shortly, but first we focus on the
�-dependence. Forq��/2 and ���res we determine
t transition independently by varying the coupling constant
and calculating the number of cycles needed for the ampli-
tude of band 1 to reach its maximum. A comparison of these
results with those predicted by Eq.�30� is given in Fig. 8.

FIG. 8. Transition time versus�/��M 01�� for q��/2 and�
��res .

FIG. 9. Transition-matrix element for a set of Bloch wave vec-
tors as a function of�2. Each curve corresponds to one of the Bloch
wave vectors in a setq��/nR wheren�1 to 10.

FIG. 10. Band 0→1 transition resonance frequency�res(q) for
a set of Bloch wave vectors as a function of�2. Each curve corre-
sponds to one of the Bloch wave vectors in a setq��/nR where
n�1 to 10.

FIG. 7. Frequency spectrum of the population of band 1 atq
��/2 with ��0.01, ���res . Harmonics with the natural fre-
quency of the band��1(�/2) dominate the Fourier spectrum. Note
that in this case the amplitude of��1(�/2) is comparable to that
of ��0(�/2) in Fig. 6.
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The results clearly show thatt transition is inversely propor-
tional to the amplitude of vibration and that Eq.�30� is a
reasonable approximation.

We now turn to the case where� is fixed and�M 01� and
�res are allowed to vary. Under these conditions the inter-
band transition time is given by

t transition�q,R1 ,R2 ,�1 ,�2�

�
�

��M 01�q,R1 ,R2 ,�1 ,�2���res�q,R1 ,R2 ,�1 ,�2�
.

�31�

For simplicity, we begin by focusing on calculating�M 01�
and �res in various limits. Earlier we considered a system
with �1�1, �2�13, R1�0.8R, andR2�0.2R. Now we al-
low �2 to vary and calculate�M 01(q,�2)� for q in the interval
�0,�	. The results are shown in Fig. 9.

One can see that for each value ofq, the transition-matrix
element is a monotonic function of�2 bounded from above
by values independent of�2. One can show that these bounds
are reached when�2��1(R1 /R2)2. In addition, it is rela-
tively straightforward to show that in the limits of�2→�1

andR1�R2 , �M 01(q,�2)� becomes a function of the crystal
structure andq alone. For example, at the band edgeq��,
one can perform an analytical calculation of�M 01(q)� and
obtain

lim
�2→�1

M 01��,�2��i
�

R
�32�

and

lim
�2��1�R1/R2�

2

M 01��,�2��i
4�2�

�R1� �2�4
R2

R1
�

sin� 2�R2

R1
�

1�cos� 2�R2

R1
�

�R1� �R2�
�R1R2

2
sin� 2�R2

R1
� � � �1�cos� 2�R2

R1
� � . �33�

Thus, the extrema of�M 01(�)� at a band edge can be tuned
purely by geometric considerations. Finally, as it is clear
from the plot, for the same value of�2, the maximum cou-
pling between resonance bands is achieved at the band edge
q�� as one might expect to occur at a Bragg plane.

As far as the resonance frequency is concerned, it is plot-
ted for each value ofq in Fig. 10 as a function of�2. Note
that for values ofq	�/4R, the�res(q,�2) exhibit an extre-
mum at �2�18, which is close to the quarter-wavelength
condition �2��1(R1 /R2)2�16. At �2��1(R1 /R2)2 it is
easy to show that interband resonance frequencies at allq
tend to collapse, approaching 0 according to�1/��2.

Using the results of Figs. 9 and 10,t transition can now be
calculated for each value ofq as a function of�2, as shown
in Fig. 11. From the figure we see that for each value ofq
there exists an optimal value of�2 such that interband tran-
sition time is minimal. Another important fact is that for a
fixed value of�2, the transition time will achieve its minimal
value at the band edgeq��. The latter is partially a conse-
quence of the fact that the coupling between states is maxi-
mal at the band edge. Thus, one would expect similar behav-
ior at Bragg planes in general for other photonic crystal
systems.

Finally, as a concrete example, let us consider transitions
in the microwave regime. Here, the frequencies can be of the
order of ��109 Hz. For the case of the photonic crystal

considered in this paper with�1�1, �2�13, R1�0.8R and
R2�0.2R the optimal transition time is given by

t transition�0.503
R2

c�
. �34�

In the microwave regimeR�0.1 m and a reasonable ampli-
tude for a displacement is��10�8 m, thus leading to an
interband transition time of the order of 10�3�10�2 s.

FIG. 11. Band 0→1 transition time for a set of Bloch wave
vectors as a function of�2. Each curve corresponds to one of the
Bloch wave vectors in a setq��/nR wheren�1 to 10.
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VII. SUMMARY

In this paper, we studied the behavior of electromagnetic
states associated with photonic crystals, which are undergo-
ing rigid time-dependent translations in position space. It
was shown that the Bloch wave vector remains a conserved
quantity and that an analogue of Bloch’s theorem for a time
dependent solution of the states can be formulated. It was
also shown that under translations involving harmonic rigid
vibrations of the photonic crystal, tuning the driving fre-
quency to the interband resonance frequency, induces reso-
nant transitions between the bands. In particular, a character-
istic resonance transition time was derived, which scales
inversely with the amplitude of vibrations, transition-matrix
element and resonance frequency. Finally, it was established
that given all the other parameters fixed an interband transi-
tion time is minimized if the transition is made at a Bragg
plane.
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APPENDIX

In the following, we provide a detailed derivation of a
modified Bloch theorem for a photonic crystal undergoing
rigid time-dependent oscillations in position space. Consider
the case of a photonic crystal vibrating with an amplitude
�(t)�� sin(�t). Maxwell’s equations take the form

�    H( r̄,t) ��[ r̄ ��̄ � t �] 
�E[ r̄ ,t)]

�ct
�

��[ r̄��̄� t �]

�ct
E( r̄,t),

�A1�

�    E( r̄,t) ��
�H( r̄,t)

�ct
,

where �( r̄,t) is now a spatially periodic time dependent
function such that
R̄� r̄:�� r̄�R̄��̄(t)	��� r̄��̄(t)	. It is

reasonable to conjecture that this translational symmetry
should still impose some restrictions on the fields even in the
time-dependent case. In fact we will prove that Bloch’s theo-
rem still holds in the time-dependent case in the following
form. For a time dependent solution of Eq.�A1� it is possible
to define ‘‘good quantum numbers’’q̄ and�n so that

� Hq̄,�n ,�� r̄�R̄,t �

Eq̄,�n ,�� r̄�R̄,t �
� �exp� i q̄R̄ �� Hq̄,�n ,�� r̄,t �

Eq̄,�n ,�� r̄,t �
� .

�A2�

To demonstrate this, we look for a solution to a time
dependent problem in a complete plain wave basis

� H� r̄,t �

E� r̄,t �
� �
 dq̄d�� H� q̄,��

E� q̄,��
� �q̄,��, �A3�

where

�q̄,���
1

�2��2
exp� i q̄ r̄�i�t � �A4�

and

�q̄0 ,�0�q̄,����� q̄0� q̄ ����0���. �A5�

Since �( r̄�R̄)��( r̄) we can decompose the dielectric
function in terms of the reciprocal space modes

�� r̄ ���
Ḡ

� Ḡ exp� iḠ r̄ �. �A6�

Substitution of Eqs.�A3� and�A6� into Maxwell’s Eqs.�A1�
gives


 dq̄d �i[H( q̄ , �)   q̄] �q̄, ���
 dq̄d �
��[ r̄ ��̄ � t �]

�ct
E� q̄,���q̄,���
 dq̄d�i�[ r̄��̄� t �]

�

c
E� q̄,���q̄,��,

�A7�


 dq̄d �i[E( q̄ , �)  q    ̄   ] �q̄, ����
 dq̄d �iH� q̄, ��
�

c 
�q̄, ��.

Multiplying both sides of Maxwell’s equations by�q̄0 ,�0� we get

0 �H � q̄0 , �0 �  q̄0 �
 dq̄d �
�

c
E� q̄,���q̄0 ,�0��� r̄��̄� t �	�q̄,���i
 dq̄d�E� q̄,��� q̄0 ,�0�

��� r̄��̄� t �	

�ct
�q̄,��,

�A8�

0 �E � q̄0 , �0 �  q̄0 �
�0

c
H� q̄0 ,�0�.

5300 PRB 61MAKSIM SKOROBOGATIY AND J. D. JOANNOPOULOS

maksims

maksims

maksims

maksims

maksims

maksims

maksims

maksims

maksims

maksims

maksims

maksims



1. Evaluation of �dq̄d��ÕcE„ q̄ ,�…Š q̄0 ,�0��† r̄À�̄„t…‡�q̄ ,�‹
First, let us investigate the form of the term


 dq̄d�
�

c
E� q̄,���q̄0 ,�0��� r̄��̄� t �	�q̄,�� �A9�

more closely. Since

�� r̄��̄� t �	��
Ḡ

� Ḡ exp� iḠ r̄�iḠ�̄� t �	 �A10�

we have


 dq̄d�
�

c
E� q̄,���q̄0 ,�0��� r̄��̄� t �	�q̄,�� �A11�

�
 dq̄d�
�

c
E� q̄,���

Ḡ

� Ḡ�q̄0 ,�0�

�exp� iḠ r̄�iḠ�̄� t �	�q̄,��. �A12�

But now

�q̄0 ,�0�exp� iḠ r̄�iḠ�̄� t �	�q̄,��

�
1

�2��4
 dr̄ exp� i� q̄�Ḡ� q̄0� r̄	

�
 dt exp� i��0���t�iḠ�̄� t �	 �A13�

and the integral over space is trivial. Thus, we obtain

�q̄0 ,�0�exp� iḠ r̄�iḠ�̄� t �	�q̄,��

��� q̄�Ḡ� q̄0�
1

2�
 dt exp� i��0���t�iḠ�̄� t �	.

�A14�

The time-dependent integral can be performed analyti-
cally in the following way:

1

2�
 dt exp� i��0���t�iḠ�̄� t �	

�
1

2�
 dt exp� i��0���t	� �
l�0

��
��i � l

l!
�Ḡ�̄� t �	 l� .

�A15�

Now assume that the crystal is shaken with a single fre-
quency

�̄� t ���̄
exp� i�t ��exp��i�t �

2i
. �A16�

Substitution of Eq.�A16� into Eq. �A15� leads to the fol-
lowing

1

2�
 dt exp� i��0���t�iḠ�̄� t �	 �A17�

�
1

2�
 dt exp� i��0���t	� �
n�0

��
��1� l

l!
� Ḡ�̄

2
� l

�
p�0

l

���1�p exp� i�t� l�p �	exp��i�tp �
l!

p! � l�p �! � .

�A18�

The integration over time can now be easily performed to
give

1

2�
 dt exp� i��0���t�iḠ�̄� t �	

� �
l���

��

���0���l��Dl�Ḡ�̄ �, �A19�

where coefficientsDl(Ḡ�̄) can be easily calculated by col-
lecting the powers of exp(i�t) to obtain

D2l�D�2l���1� l�
f �l

��
��1� f

22 f

�Ḡ�̄ �2 f

� f �l �! � f �l �!
�A20�

and

D2l�1��D�2l�1���1� l�1�
f �l

��
��1� f

22 f �1

�Ḡ�̄ �2 f �1

� f �l �! � f �l�1�!
.

�A21�

Finally, we arrive at the following expression:


 dq̄d�
�

c
E� q̄,���

Ḡ

� Ḡ�q̄0 ,�0�exp� iḠ r̄�iḠ�̄� t �	�q̄,��

�A22�

�
1

c �
Ḡ

� Ḡ� �
l���

��

��0�l��

�E� q̄0�Ḡ,�0�l��Dl�Ḡ�̄ �� . �A23�

2. Evaluation of i�dq̄d�E„ q̄ ,�…Š q̄0 ,�0�ˆ��† r̄
À�̄„t…‡Õ�ct‰�q̄ ,�‹

Proceeding in exactly the same fashion as in the previous
section, one can easily derive the following expression:

i
 dq̄d�E� q̄,��� q̄0 ,�0	 ��� r̄��̄� t �	

�ct
	 q̄,�


�A24�

�
1

c �
Ḡ

�Ḡ�̄ �

2
�� Ḡ� �

l���

��

E� q̄0�Ḡ,�0�l��

��Dl�1�Ḡ�̄ ��Dl�1�Ḡ�̄ �	� . �A25�

PRB 61 5301RIGID VIBRATIONS OF A PHOTONIC CRYSTAL AND . . .



3. Solution of the time-dependent Maxwell’s equation for the rigid harmonic vibrations of a photonic crystal

Combining the results of the above sections we arrive at the following form of a solution for Maxwell’s equations:

0 �H � q̄0 , �0 �  q̄0 � 
1

c �
Ḡ

� Ḡ� �
l���

��

E� q̄0�Ḡ,�0�l��� �Ḡ�̄ �

2
��Dl�1„Ḡ�̄…�Dl�1„Ḡ�̄…����0�l��Dl�Ḡ�̄ �� � ,

�A26�

0 �E � q̄0 , �0 �  q̄0 �
�0

c
H� q̄0 ,�0�.

A striking conclusion that can be drawn from this form of
a solution is that it is still possible to define a ‘‘good’’ quan-
tum numberq̄0 for a vibrating photonic crystal, since the
modes with differentq̄0 do not mix. Another immediate con-
clusion is that along with a normal mode frequency�0 and
amplitude

� H� q̄0 ,�0�

E� q̄0 ,�0�
�

the harmonics of the ‘‘driven’’ modes will be also excited
with frequencies�0�l� and amplitudes

� H� q̄0 ,�0�l��

E� q̄0 ,�0�l��
� .

Thus a solution to a time-dependent Hamiltonian equation
can be written in the form

� Hq̄0 ,�0
� r̄,t �

Eq̄,�0
� r̄,t �

� ��
Ḡ

�
l���

�� � H� q̄0�Ḡ,�0�l��

E� q̄0�Ḡ,�0�l��
�

�exp� i� q̄0�Ḡ � r̄�i��0�l��	.

�A27�

After a set of simple manipulations the final form of the
solution is

� Hq̄0 ,�0
� r̄,t �

Eq̄0 ,�0
� r̄,t �

� �exp� i q̄0r̄ �Ūq̄0 ,�0 ,�� r̄,t �,

�A28�

Ūq̄0 ,�0 ,�� r̄�R̄,t ��Ūq̄0 ,�0 ,�� r̄,t �,

where

Ūq̄0 ,�0 ,�� r̄,t �� �
l���

��

Ũq̄0 ,�0 ,�,l� r̄ �exp��i��0�l��t	,

Ũq̄0 ,�0 ,�,l� r̄�R̄ ��Ũq̄0 ,�0 ,�,l� r̄ �,

Ũq̄0 ,�0 ,�,l� r̄ ���
Ḡ

� H� q̄0�Ḡ,�0�l��

E� q̄0�Ḡ,�0�l��
� exp��iḠ r̄ �.

�A29�
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