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Nonzero-temperature path-integral method for fermions and bosons:
A grand canonical approach
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The calculation of the density matrix for fermions and bosons in the grand canonical ensemble allows an
efficient way for the inclusion of fermionic and bosonic statistics at all temperatures. It is shown that in a path-
integral formulation the one-particle density matrix can be expressed via an integration over a novel represen-
tation of the universal temperature-dependent functional. In this paper we discuss a representation for the
universal functional in terms of Hankel functions which is convenient for computational applications. Tem-
perature scaling for the universal functional and its derivatives is also introduced thus allowing an efficient
rescaling rather then recalculation of the functional at different temperatures. We expect that our method will
give rise to a numerically efficient path-integral approach for calculation of a density matrix in the grand
canonical ensemble.@S0163-1829~99!06127-5#
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I. INTRODUCTION

In fermionic systems, the problem of interacting electro
can be treated effectively in the Kohn Sham~KS! density-
functional formalism.1 According to KS a problem ofN in-
teracting fermions with a HamiltonianH0 can be mapped
into a problem ofN noninteracting particles described by
modified HamiltonianH, which is, in turn, a functional of the
density~see the review2!

H5T~r!1Vion~r !1VH~r !1VXC~r !, ~1!

where T(r) is a kinetic-energy functional,Vion(r ) is an
electron-ion interaction potential,VH(r ) is the Hartree poten
tial

VH~r !5e2E r~r 8,r 8;b,m!

ur 2r 8u
d3r 8, ~2!

andVXC(r ) is a universal exchange-correlation electron d
sity functional given by

VXC~r !5
dEXC@r~r ,r ;b,m!#

dr~r ,r ;b,m!
. ~3!

The temperature-dependent fermion density matrix is defi
as

r~r ,r 8;b,m!5^r u
1

Z21 exp~bH !11
ur 8&. ~4!

For noninteracting particles, a self-consistent algorit
for finding the density matrix in the grand canonical form
lation is typically:

~a! Use r(r ,r ;b,m) to find a new effective Hamiltonian
H.

~b! Given H calculate a newr(r ,r ;b,m) from

r~r ,r 8;b,m!5^r u
1

Z21 exp~bH !11
ur 8&. ~5!
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~c! Update the chemical potentialm @which comes viaZ
5exp(bm)#.

~d! If self-consistency is not achieved go to~a!.
Up to this point the algorithm is rather general and can

implemented in many ways. One of the implementations
this algorithm for fermions is originally due to Goedecke3

and lately extended by Baer.4 The most important step in
volves implementation of part~b!. For example,

r~r ,r 8;b,m!5^r u
1

Z21 exp~bH !11
ur 8&

5 (
k51

`

(
k851

`

^r uk&^ku
1

Z21 exp~bH !11
uk8&

3^k8ur 8&, ~6!

where ^r uk& is any convenient basis set. By approximati
1/@Z21 exp(bH)11#5Pol(H;b) using Chebyshev polyno
mials, Goedeckeret al.obtained an efficient way of calculat
ing the density matrix using Pol(H;b) as a propagator.

An alternative and potentially beneficial method f
implementation of step~b! is to use the path-integra
approach.5,6 It will be shown in Sec. II that the density ma
trix for fermions and bosons can be presented as

r~r ,r 8;b,m!; lim
P˜`

E dLP
2dKPo

2 D~LP
2 ,KPo

2 !

3Fbos, f erm~b,P,LP
2 ,m1KPo

2 !, ~7!

where, briefly,Fbos, f erm(b,P,LP
2 ,KPo

2 ) is a universal func-
tional of variablesKPo

2 and LP
2 , and D(LP

2 ,KPo
2 ) is a non-

universal system-dependent probability distribution of the
variables. Thus, one can precalculate the universal functio
1433 ©1999 The American Physical Society
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and employ Monte Carlo techniques to calculate a distri
tion of KPo

2 andLP
2 for any particular system. Since the com

putational effort mostly involves a calculation of a tw
dimensional ~2D! nonuniversal probability distribution
D(LP

2 ,KPo
2 ) this method may prove to be advantageous

computational purposes due to the functional simplicity
the variablesKPo

2 andLP
2 .

Below, we confine ourselves to a derivation and disc
sion of this universal functional and the important scali
laws associated with it. Although we are primarily interest
in fermions we also include wherever possible the derivat
for bosons as well.

II. ALL TEMPERATURE SOLUTION

In the path-integral formalism, evaluation of the dens
matrix for fermions or bosons proceeds by insertingP aux-
iliary states between position operators thereby reducing
problem to the evaluation of ^r u„1/$exp@b(H2m)#
61%…1/Pur 8&.7–9 At high temperatures the conventional u
of the Trotter approximation for separating kinetic and p
tential energy contributions is applicable and one obtains

^r uS 1

exp@b~H2m!#61D 1/P

ur 8&

;^r uexpS 2
b

P
~H2m! D ur 8&

;^r uexpS 2
b

P
TkinD ur 8&expS 2

b

P
V~r 8! D . ~8!

At low temperaturesb˜` and, in the case of fermion sta
tistics,

^r f uS 1

exp@b~H2m!#61D 1/P

ur 8&;u~m2H !, ~9!

whereu(x) is a step function and the propagator becom
invariant with respect toP. Thus, for largeP, the propagator
^r u$1/exp@b(H2m)#61%1/Pur 8& is easy to estimate at hig
temperatures while at low temperatures it becomesP inde-
pendent, requiring new methods to be developed.

The problem of evaluation of the fermionic density mat
at zero temperature can be solved exactly in the path-inte
formulation in terms of Bessel functions.8 For the case of
nonzero temperatures the problem has also been solved
the fermionic density matrix represented in integral form9

However, there exists a more computationally conveni
representation for the fermionic and bosonic density ma
in terms of the Hankel functions of the first kind.

To calculate the density matrix in the grand canoni
ensemble, we exploit the property of a meromorphic funct
being equal to a summation over its poles and residues. T
-
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exp@b~H2m!#61
56

1

2
6 (

n52`

1`
1

iwn2b~H2m!
,

~10!

where wn5p(2n11) for fermions and wn52pn for
bosons. The density matrix now can be written as

^r u
1

exp@b~H2m!#61
ur 8&

56
d~r 2r 8!

2
6 (

n52`

1`

^r u
1

iwn2b~H2m!
ur 8&. ~11!

In this form it is still difficult to make a transition to a
path-integral formalism. We notice, however, that forwn
.0

1

iwn2b~H2m!
52 i E

0

1`

dt exp@2twn2 i tb~H2m!#

~12!

and for2wn

1

2 iwn2b~H2m!
5 i E

0

1`

dt exp@2twn1 i tb~H2m!#.

~13!

Thus, evaluation of̂ r u1/@ iwn2b(H2m)#ur 8& is now sub-
stantially simplified and we can change to a path-integ
formulation with

^r u
1

iwn2b~H2m!
ur 8&

52 i E
0

1`

dt exp~2twn!^r uexp@2 i tb~H2m!#ur 8&.

~14!

The matrix element̂ r uexp@2 i tb(H2m)#ur 8& is nothing
else but a real-time propagator. Its evaluation in a pa
integral formalism is trivial and leads to

^r uexp@2 i tb~H2m!#ur 8&

5 lim
P˜`

S 2 imP

2p\tb D 3P/2

expF i S mlp
2

2\t
1

\kp
2t

2m D G , ~15!

where

\2kp
2

2m
5bFm2

1

P S V~r !1V~r 8!

2
1 (

i 51

P21

V~r ( i)!D G ~16!
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l p
25

P

b S ~r2r (1)!21 (
i 51

P22

~r ( i)2r ( i11)!21~r (P21)2r 8!2D .

~17!

Finally, for wn.0

^r u
1

iwn2b~H2m!
ur 8&

52 i E
02 ih

1`2 ih
dt exp~2twn!S 2 imP

2p\tb D 3P/2

3expF i S mlp
2

2\t
1

\kp
2t

2m D G ~18!

and for2wn

^r u
1

2 iwn2b~H2m!
ur 8&

5 i E
01 ih

1`1 ih
dt exp~2twn!S imP

2p\tb D 3P/2

3expF2 i S mlp
2

2\t
1

\kp
2t

2m D G . ~19!

Using the integral representation of the Hank
functions10

Hn
(1)~z!52

i

p
expS 2

1

2
inp D znE

0

1` dt

tn11
expF1

2
i S t1

z2

t D G
~20!

and summing over all frequencies, it is easy to show that
expression for the density matrix can be rewritten for ferm
ons as

r~r ,r 8;b,m!5
d~r 2r 8!

2
1 lim

P˜`
E dr 3PF f erm~b,P,LP

2 ,KP
2 !,

~21!

where

F f erm~b,P,LP
2 ,KP

2 !

5S P

2p D 3P/2

ReF H 22p i

b (
n50

` S zn

LP
2 D 3P/221

3H
3P/221

~1! ~zn!J G . ~22!

For bosons

r~r ,r 8;b,m!52
d~r 2r 8!

2
2 lim

P˜`
E dr 3P

3Fbos~b,P,LP
2 ,KP

2 !, ~23!

where
l

e
-

Fbos~b,P,LP
2 ,KP

2 !

5S P

2p D 3P/2

ReF H 22p i

b (
n51

` S zn

LP
2 D 3P/221

3H3P/221
~1! ~zn!J 1 lim

w0˜10
H 2p i

b S z0

LP
2 D 3P/221

3H3P/221
~1! ~z0!J G ~24!

and

zn5F S KP
2 1 i

2wn

b DLP
2 G1/2

; wn
f erm5p~2n11!;

wn
bos52pn ~25!

\2KP
2

2m
5m2

1

P S V~r !1V~r 8!

2
1 (

i 51

P21

V~r ( i)!D ~26!

LP
2 5PS ~r2r (1)!21 (

i 51

P22

~r ( i)2r ( i11)!21~r (P21)2r 8!2D .

~27!

In the case of bosons, term in the summation correspond
to zero frequencyw0 should be calculated in a limitw0
˜10.

III. SCALING OF THE UNIVERSAL FUNCTIONAL

Above we showed that the density matrix for fermio
and bosons can be expressed via a universal functi
Fbos, f erm(b,P,LP

2 ,KP
2 ) as

FIG. 1. F f erm(b51.0,P520,LP
2 ,KPo

2 ). Note the strong oscilla-
tions arising from the nature of fermionic statistics.
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r~r ,r 8;b,m!56
d~r 2r 8!

2
6 lim

P˜`
E dr 3P

3Fbos, f erm~b,P,LP
2 ,KP

2 !. ~28!

From the explicit form of the universal functional derive
above one can easily derive a scaling law

Fbos, f erm~b,P,LP
2 ,KP

2 !

5b23P/2Fbos, f erm~1,P,LP
2b21/2,KP

2b1/2!. ~29!

This scaling law can be useful if we consider that t
integral over the universal functional can be rewritten as

E dr 3PFbos, f erm~b,P,LP
2 ,KP

2 !

5E dLP
2dKPo

2 D~LP
2 ,KPo

2 !Fbos, f erm~b,P,LP
2 ,m1KPo

2 !,

~30!

where

\2KPo
2

2m
52

1

P FV~r !1V~r 8!

2
1 (

i 51

P21

V~r ( i)!G ~31!

and D(LP
2 ,KPo

2 ) is the distribution of pairs of variable
(LP

2 ,KPo
2 ). So, in principle, it is enough to calculate the un

versal functional once for sayb51.0 and the value of the
functional at all other temperatures can be evaluated u
the scaling law. For example, in Fig. 1 we show a plot
F f erm for b51 and P520 as a function ofLP and KPo .
Note that as we vary temperature, this plot will simply e
pand and contract along the corresponding axes as dic
by Eq. ~29!.

The integration process in Eq.~30! could be implemented
by first calculating the distributionD(LP

2 ,KPo
2 ) ~which actu-

ally depends uponr andr 8) and then multiplying this distri-
bution on the values of the universal functional calculated
a 2D grid shifted by2m along theKPo

2 axis.
The averages and thermodynamic derivatives of the

neric operatorU(r ,r 8) can now be determined from

^U~r ,r 8!&b5E drdr 8r~r ,r 8;b,m!U~r ,r 8!, ~32!

and its derivatives from

]^U~r ,r 8!&b

]b
5E drdr 8

]r~r ,r 8;b,m!

]b
U~r ,r 8! ~33!
.

g
f

-
ted

n

e-

]^U~r ,r 8!&b

]m
5E drdr 8

]r~r ,r 8;b,m!

]m
U~r ,r 8!. ~34!

The thermodynamic derivatives of the density matrix can
calculated using the scaling relation for the universal fu
tional giving

]r~r ,r 8;b,m!

]m
5 lim

P˜`

6
1

b~3P21!/2

3E dLP
2dKPo

2 P~LP
2 ,KPo

2 !

3
]Fbos, f erm~1,P,LP

2b21/2,KP
2b1/2!

]KP
2

~35!

and

]r~r ,r 8;b,m!

]b
5 lim

P˜`

6
1

2b~3P11!/2E dLP
2dKPo

2 P~LP
2 ,KPo

2 !

3H ]Fbos, f erm~1,P,LP
2b21/2,KP

2b1/2!

]KP
2

2
1

b

]Fbos, f erm~1,P,LP
2b21/2,KP

2b1/2!

]LP
2

2
3P

b1/2
Fbos, f erm~1,P,LP

2b21/2,KP
2b1/2!J .

~36!

IV. CONCLUSIONS

A grand canonical formulation of the path-integral fo
malism allows an effective treatment of the fermionic a
bosonic systems. In this formulation the one-particle den
matrix can be expressed as an integral over a universal f
tional Fbos, f erm(b,P,LP

2 ,KPo
2 ) with the variablesLP

2 , KPo
2

being determined by the specific potential being used
computationally convenient representation of the univer
functional is possible in terms of Hankel functions of the fi
kind so one can, in principle, precalcula
Fbos, f erm(b,P,LP

2 ,KPo
2 ), and the density itself will be deter

mined by a distribution of the nonuniversal variabl
LP

2 , KPo
2 . Due to the functional simplicity of the variable

KPo
2 andLP

2 , this method may prove to be advantageous
computational purposes.
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