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The calculation of the density matrix for fermions and bosons in the grand canonical ensemble allows an
efficient way for the inclusion of fermionic and bosonic statistics at all temperatures. It is shown that in a path-
integral formulation the one-particle density matrix can be expressed via an integration over a novel represen-
tation of the universal temperature-dependent functional. In this paper we discuss a representation for the
universal functional in terms of Hankel functions which is convenient for computational applications. Tem-
perature scaling for the universal functional and its derivatives is also introduced thus allowing an efficient
rescaling rather then recalculation of the functional at different temperatures. We expect that our method will
give rise to a numerically efficient path-integral approach for calculation of a density matrix in the grand
canonical ensembl¢S0163-18209)06127-5

I. INTRODUCTION (c) Update the chemical potential [which comes viaZ
—exp(Bu)]. |
In fermionic systems, the problem of interacting electrons (d) If self-consistency is not achieved go (®@.
can be treated effectively in the Kohn ShdKS) density- Up to this point the algorithm is rather general and can be
functional formalismt According to KS a problem oRN in- implemented in many ways. One of the implementations of

teracting fermions with a Hamiltoniahl, can be mapped this algorithm for fermions is originally due to Goedecker
into a problem ofN noninteracting particles described by a and lately extended by Ba&rThe most important step in-
modified HamiltoniarH, which is, in turn, a functional of the volves implementation of pafb). For example,

density(see the reviety

H=T(p)+Vion(r) + V() + Vxc(r), (1) , ,
. o . . p(r,r";B,pm)=(rl=— Ir')
where T(p) is a kinetic-energy functionalV;,,(r) is an Z - expBH)+1
electron-ion interaction potentia¥,,(r) is the Hartree poten- o
tial
= riky(k k’
o 2, 2 (K oK)
r Yr ; L
VH(r)=e2J p|—|“d3r’, @)
r—r’
X(k'[r"y, (6)

andVyc(r) is a universal exchange-correlation electron den-

sity functional given b
Y g Y where(r|k) is any convenient basis set. By approximating

SExclp(r,r;B,m)] 112~ exp(BH)+1]=Pol(H;B) using Chebyshev polyno-
Sp(rrBp) 3 mials, Goedeckeet al. obtained an efficient way of calculat-
ing the density matrix using Pdi(; 3) as a propagator.
The temperature-dependent fermion density matrix is defined An alternative and potentially beneficial method for
as implementation of step(b) is to use the path-integral
approact”® It will be shown in Sec. Il that the density ma-
trix for fermions and bosons can be presented as

Vxe(r)=

rr';B,m)=(r r'. 4
p(r.r';B,m)=( |Z‘1exp(,3H)+1| )
For noninteracting particles, a self-consistent algorithm p(r,r'; B, )~ lim J dL2dK2,D(L2 ,K2,)
for finding the density matrix in the grand canonical formu- P—oo
lation is typically: ) )
(@) Usep(r,r;B,u) to find a new effective Hamiltonian XFhosterm(B,P.Lp.utKpo),  (7)

H

(b) GivenH calculate a nevp(r,r;3,u) from where, briefly,Fyoserm(8,P,L5 ,K3,) is a universal func-

1 tional of variablesk3, andL3, andD(L3,K3,) is a non-
Ir'). (5) universal system-dependent probability distribution of these
Z texpBH)+1 variables. Thus, one can precalculate the universal functional

p(r.r’sBou)=(r|
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and employ Monte Carlo techniques to calculate a distribu- 1 1 g 1

tion of K2, andL? for any particular system. Since the com- ———— =t —
putational effort mostly involves a calculation of a two- exgp(H=p)]+1 27 n=e W= B(H—u)
dimensional (2D) nonuniversal probability distribution
D(L2,K3,) this method may prove to be advantageous for _
computational purposes due to the functional simplicity ofWhere wy,=m(2n+1) for fermions andw,=2mn for

(10

the variablek2, andL2. bosons. The density matrix now can be written as
Below, we confine ourselves to a derivation and discus-

sion of this universal functional and the important scaling 1

laws associated with it. Although we are primarily interested(r | - [r")

in fermions we also include wherever possible the derivation exdA(H-w)]x1

for bosons as well. oo

ZiTinZ <I’|m|r'>. (11)

Il. ALL TEMPERATURE SOLUTION
. ) . ) In this form it is still difficult to make a transition to a
In the path-integral formalism, evaluation of the density yath-integral formalism. We notice, however, that fof
matrix for fermions or bosons proceeds by insertthqux-  ~
iliary states between position operators thereby reducing the

problem to the evaluation of(r|{(1{exdB(H—u)]

+1)YP[r’)."° At high temperatures the conventional use 1 o +°°d ,
of the Trotter approximation for separating kinetic and po- jw. —g(H—p) ' Jo texd —tw,—itB(H—p)]
tential energy contributions is applicable and one obtains (12)
1 1P and for —w,
r r’
o sgpmgzr) 1

, _iWn_IB(H_M):ifo dtexf —tw,+it B(H—pu)].
~(r|ex;{—E(H—,u)>|r’) (13
Thus, evaluation ofr|1[iw,—B(H—u)]|r’) is now sub-

~<r|exr{ —ETkm)lr’>exp< _E\/(rf))_ (8) stantially simplified and we can change to a path-integral
P P formulation with

At low temperatureg3—oc and, in the case of fermion sta- (| I
tistics, iw,—B(H—puw)

=—i fo+mdtexr(—twn)<r|exr[—it,B(H—,u)]|r’).

1 1/P
P s I S T
(14)

where 6(x) is a step function and the propagator becomesthe matrix element(r|exd —it3(H—u)]|r’) is nothing
invariant with respect t®. Thus, for largeP, the propagator else but a real-time propagator. Its evaluation in a path-
(rl{l/exd B(H— ) 1= 1}YP|r") is easy to estimate at high integral formalism is trivial and leads to
temperatures while at low temperatures it becofande-
pendent, requiring new methods to be developed. ]

The problem of evaluation of the fermionic density matrix (rlexd —itB(H=w)]lr")
at zero temperature can be solved exactly in the path-integral . 3P/ 5 5
formulation in terms of Bessel functiofisfor the case of i —imP [l Rkt 1
nonzero temperatures the problem has also been solved with ' | 27atg) 0\ 22t " 2m || (15
the fermionic density matrix represented in integral férm.
However, there exists a more computationally convenient
representation for the fermionic and bosonic density matrifvhere
in terms of the Hankel functions of the first kind.

To calculate the density matrix in the grand canonical
ensemble, we exploit the property of a meromorphic function

16
being equal to a summation over its poles and residues. Thus 2m (16)

212 ' P-1
hAC [ _E(V(r)+v(r S V(r(‘)))
P 2 =
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P-2 2 2
F P,L5,K

|g:g (r—r®24 > (r(i)_r(i+l))2+(r(P1)_r/)2). bos( P)

-1

p \3P2 —2mi & [z, \ !
1 _[ —ems | A
40 (277) RGH B nZl (LE)

Finally, for w,>0 . 3P/2-1
(1) i — a7l ZO
XH5p5_1(z,) ¢+ 1lim 3 \2

i, gr=m "

(L)
- tooming —imP 3P/2 ><H3P/21(ZO)]‘| (24)
=i, oo i
and
pHm@ hkgt” 18 "
xXexpgi| ==+ —=— oW
2kt 2m Z,= (K%Hf)L%} ;oweM=7(2n+1);
and for—w,
1 wPS=27n (25)
rl|— r'
s 2 -
h2K2 1{V(r)+V(r) .
[tetin imp | 3P12 —p—=|———=+2 v | (26
zlf dtexp —tw,)| =—— 2m P 2 =
0+in 27htpB
ml2 kit 2
T i ST 2_ _ (D2 () _ ((i+1))2 (P-1)_ . 1\2
xex;{ '<2ht+2m> . (19 Ls P((r r )+izl(r ri et (r r)).
. . . (27)
Using the integral representation of the Hankel
H 0
functions In the case of bosons, term in the summation corresponding
to zero frequencyw, should be calculated in a limiv,
—+0.

H ()= i 1 nJ“O dt 1 t+22
n(2)= ;ex Elnw z . tn+1ex §| T
(20)

and summing over all frequencies, it is easy to show that the
expression for the density matrix can be rewritten for fermi-

Ill. SCALING OF THE UNIVERSAL FUNCTIONAL

Above we showed that the density matrix for fermions
and bosons can be expressed via a universal functional

ons as
Fbosferm(,ByPyLz ,K|2:) as
_5(r—r’) i 3P 2 2
p(r’r,'B’M): 2 + llm dr Ffel’m(BlPlL vKP)y Universal Potential
P—o 807
(21) 75—_
where :::
Fferm(/BvP-LZ ,K|23) ::
P 3P/2 _27T| @ 7 3P/2—-1 50__
=2, R = .
<277) B nzo L2 w
<Hi, e | @ o
25—
For bosons o]
! 5(r_r’) H 3P 1:2 10.0 80.0 : '/-\
pITEI =TT _,:"E‘Lf o R S P SR AR BAT Rt
XFbOS(ﬂipyszK%)r (23)

FIG. 1. Frerm(B=1.0P=20L2,K2.). Note the strong oscilla-
where tions arising from the nature of fermionic statistics.
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', _ 5( - s 3P (9<U(rvr,)>,3_ ,&p(r,r';ﬂ,,u) ,
p(r,r’;B,u)== lim fdr —a,u —f drdr —(m ucr,r'). (34

P—x
F P L2 K2 o8 The thermodynamic derivatives of the density matrix can be
XFposterm(B,P,Lp,Kp). (28) calculated using the scaling relation for the universal func-
From the explicit form of the universal functional derived tional giving
above one can easily derive a scaling law

ap(r,r'; B, p) _ lim 1
Fbos,ferm(ﬁap,'-2 aK|23) (9,u, . ,B(SP 1)/2
:B_BP/ZFb ¢ (1,P,LZB_1/2,K231/2)- (29)
osferm P P dez K3,P(L3,K3,)
This scaling law can be useful if we consider that the
integral over the universal functional can be rewritten as <9Fbosferm(1 = Lpﬂ 12 K ’31/2)
IK32
J' drgprosferm(IB’PszvKlzj)
(35)
and
:f dL2dK2 D (L3 ,K30)Fhosterm(BP,LE, i+ K3,),
ap(r,r’;B,p) 1
I e :F|>|m t—23<3p+1>’zf dLEdKZP(LE K3,
where
thZ V(r)+V(r’) pP—1 X[ﬁFbosferm(laPyL%:B1/21K|23,81/2)
Po_ 272 "7 (r® 2
e P[ Z (r) (31) IK2
2 0—1/2 |2 pl/2
and D(L2,K3,) is the distribution of pairs of variables 1 dFposterm(L.P,LpB” % KRB™)
(L3 ,K2.). So, in principle, it is enough to calculate the uni- B L2
versal functional once for sag=1.0 and the value of the
functional at all other temperatures can be evaluated using 3P SP 1p,L23- 12 k25112
the scaling law. For example, in Fig. 1 we show a plot of 31/2 bos ferm( B BT
Fterm for =1 and P=20 as a function oL, and Kp,.
Note that as we vary temperature, this plot will simply ex- (36)
pand and contract along the corresponding axes as dictated
by Eq. (29). IV. CONCLUSIONS

The integration process in E(B0) cguldzbe implemented A grand canonical formulation of the path-integral for-
by first calculating the distributioD (L5 ,Kpo) (which actu-  malism allows an effective treatment of the fermionic and
ally depends upon andr’) and then multiplying this distri-  posonic systems. In this formulation the one-particle density
bution on the values of the universal functional calculated Omatrix can be expressed as an |ntegra| over a un|versa| func-

a 2D grid shifted by- u along theK3,, axis. tional Fpogferm(8,P,L3,K3,) with the variables 3, K3,
The averages and thermodynamic derivatives of the gepeing determined by the specific potential being used. A
neric operatoi’J(r,r') can now be determined from computationally convenient representation of the universal

functional is possible in terms of Hankel functions of the first
<U(r1r,)>p:f drdr’p(r,r’;8,w)U(r,r’), (32 kind so one can, in principle, precalculate
Fposferm(8:P,L3,K3,), and the density itself will be deter-
and its derivatives from mined by a distribution of the nonuniversal variables
L2, K2,. Due to the functional simplicity of the variables
HU(rr"))g _f drdr,‘?P(r'r,?'B'/‘) urr) (33 K2, andL3, this method may prove to be advantageous for
B B ' computational purposes.
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