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Abstract: Microstructured biodegradable optical fiber is fabricated featuring 1.1 dB/cm loss.
Two cellulose butyrate tubes separated with hydroxypropyl cellulose powder were co-drawn
into a porous double-core fiber offering integration of optical, microfluidic and potentially, drug
release functionalities.
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1. Introduction

We present design and fabrication of a first, to our knowledge, biodegradable polymer optical fiber that
simultaneously embodies optical, microfluidic, and drug release functionalities. Double-core porous fiber
structure presents a small inner core suspended in air by the low refractive index particles separating it
from the larger outer core (Fig. 1(a)). Double core structure enables laser power delivery as well as improved
collection of the reflected light for passive sensing, cladding porosity enables microfluidics and active biological
sensing, while biodegradable material combination offers a possibility of controllable drug delivery.

a)

b)

c)

Fig. 1. a) Double core biodegradable microstructured fiber. The inner fiber is suspended in air by the powder
particles. b) Fiber crossection. c) Power distribution in the fiber crossection after 3cm of propagation.

Due to their bio-friendly material composition and low cost of fabrication, microstructured polymer optical
fibers have recently received much attention in a view of numerous bio-medical applications. Particularly,
polymer microstructured optical fibers having porous structure offer a tremendous potential for simultaneous
in-vivo medical sensing and laser power delivery, thus offering an integration platform for design of a complete

       a106_1.pdf
    

OFS06 - WA2.pdf  
 



diagnostic/laser treatment system in a single fiber. Moreover, if made of biodegradable materials such fibers
can be impregnated with active pharmaceuticals such as anaesthetics or antibiotics enabling controllable
release of chemical therapeuticals during treatment. In a diagnostic mode, a sample to be analyzed can be
pumped through the interstices of a porous fiber, while the light guiding through the fiber core can be used
for detection. For example, Jensen et al. [1] have demonstrated fluorescence detection of selectively captured
antibodies that were labelled with fluorescent markers. They also found that deposition of a sensing bio-layer
is considerably easier if done on a polymer surface than on a glass surface, making polymer fibers better
suited for bio-sensing than the glass ones. Recently, the use of dual-cladding optical fibers [2, 3] has attracted
a lot of interest in the field of fluorescence microscopy as such structure permits single-mode delivery of the
excitation pulse through a smaller core, and efficient multi-mode collection of the signal (fluorescent light) by
the larger core of higher numerical aperture [2, 3, 4, 5]. In a laser delivery mode, hollow core microstructured
fibers have been demonstrated to deliver tens of watts of laser power almost anywhere in the visible and IR,
enabling flexible delivery of power from the medically important Nd : Y ag, Er : Y ag and CO2 lasers [6].

Fig. 2. Photographs of the biodegradable, double core, porous fiber preform, and its crossection.

2. Fabrication and Characterization of the Fiber

Fiber preform (Fig. 2) was prepared using commercially available cellulose butyrate tubes of different diam-
eters that have refractive index of 1.475. The smaller tube has inner and outer diameters of 1/8 and 1/4
inch, respectively, whereas the larger tube has inner and outer diameters of 3/8 and 5/8 inch, respectively.
The smaller diameter tube, which forms the inner of the two fiber cores, was sealed at both ends with Teflon
tape and placed in the middle of the larger tube that formed the outer core. In the final fiber structure the
air hole of the inner tube could be collapsed or left open depending upon application. The space between the
tubes was then filled with a polydisperse hydroxypropyl cellulose powder having refractive index of 1.337,
in order to obtain a lower index inner cladding. The glass transition temperatures of cellulose butyrate and
hydroxypropyl cellulose are estimated to be 95oC and 120oC, respectively. As the powder has significantly
higher melting temperature than the tubes, it remains in a power state during the drawing process. The
preform was preheated in the furnace of the drawing tower at a temperature of 150oC for one hour and the
fiber was subsequently drawn around 180oC.

The biodegradable fiber was drawn down to a diameter of 450 µm, and a standard cutback measurement
was performed to give fiber transmission loss of 1.1 dB/cm at λ = 630 nm. Distribution of power in the
fiber crossection Fig. 1(b) after 3cm of propagation is shown in Fig. 1(c), where nonuniformity in the power
distribution is mostly due to the fiber end distortion caused by cutting. In Fig. 1(a) three light sources were
used to visualize the particles in the cladding. Powder particles that remained intact during the drawing
process are clearly seen to be supporting the inner core. It is difficult to estimate the air fraction of the inner
cladding but the resulting structure is very porous. The effective index of refraction of the inner cladding
is thus very close to that of air. It is worth mentioning that Kominsky et al. [7] have attempted a similar
structure in silica. The marked difference is that they packed silica powder between two silica tubes and the
resulting fiber had a random pattern of holes. Since the powder was of the same material as the tubes, those
holes had randomly collapsed leaving longitudinal bubbles of random length within the inner cladding.
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3. Microfluidics. Time variation of power transmission through the fiber submerged in water

Finally, we report preliminary results on variations in optical power transmitted through the double core
microstructured fiber operated suspended in a deionized water. When water with refractive index nw ' 1.32
fills an empty space between the two cores nc = 1.475, fiber scattering loss should decrease compared to
the air-filled fiber due to a reduced core-clad index-contrast. Thus, after submerging the fiber into water
one should observe a considerable increase in the optical power transmission. However, as the hydroxypropyl
cellulose powder separating the two cores is dissolvable in water, one would expect that fiber optical properties
should eventually degrade when exposed to water for a long enough time. In a typical measurement of a
transmitted power through a 2cm fiber piece suspended in a deionized water (Fig. 3), transmitted power
would first increase dramatically in the first hour of water exposure, followed by decrease in the transmission
loss from 1.1dB/cm to 0.46dB/cm. Transmitted power would then stabilize for approximately 5 hours. After
long enough time (typically 5-10 hours) fiber transmission typically goes down, probably due to the failure
of a network of particles separating the two cores, causing increase in scattering losses. More experiments on
microfluidic properties of such fibers are currently underway.
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Fig. 3. Transmitted power through a 2cm fiber piece suspended in a deionized water. In the first hour when
water penetrates the inter-core space, transmitted power increases dramatically, followed by the decrease in
the fiber transmission loss from 1.1dB/m to 0.46dB/m. In the next 5 hours power is stabilized. After 5 hours
power transmission slowly goes down, probably due to the failure of the water dissolvable hydroxypropyl
cellulose particle network separating the two cores, thus causing additional scattering loss.
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