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Abstract: A boundary integral method [1] for calculating leaky and
guided modes of microstructured optical fibers is preserited method is
rapidly converging and can handle a large number of inchss{bundreds)
of arbitrary geometries. Both, solid and hollow core phatamystal fibers
can be treated efficiently. We demonstrate that for largéesys featuring
closely spaced inclusions the computational intensity hif boundary
integral method is significantly smaller than that of the tipole method.
This is of particular importance in the case of hollow coradgap guiding
fibers. We demonstrate versatility of the method by applyirtg several
challenging problems.
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1. Introduction

Microstructured optical fibers (MOFs) have recently atiedcmuch interest because of their
unique optical properties [2, 3, 4, 5]. Light in a MOF is coefihby one of the three principal
mechanisms: modified total internal reflection, photonindbgap guidance and antiresonant
guidance. In all the cases, the propagation of light is gfisomfluenced by the geometry of the
fiber cross section. To fully realize the potential of MOFotigh optimal design, availability
of the high performance simulation tools is essential. @ligjh significant progress has been
made in modelling of MOFs, rigorous modal analysis remahmllenging, especially in the
case of large number of holes or non-cylindrical hole shapédslitional complexity comes
from the MOF large refractive-index contrast, fully veéamodal fields, and leaky nature of
the modes.

A number of modelling techniques has been developed forrfgnttie modes of MOFs -
the plane wave expansion method [6], the localized funati@thod [7] (in a scalar approx-
imation), finite element and finite difference methods [819], boundary element methods
[11, 12, 13, 14], and multipole expansion method [15, 16,187,19]. The finite element and
finite difference methods require volume discretizationctdemands considerable memory
resources to achieve high accuracy. These methods, hqueegerell suited to treat complex
shapes. The multipole method experiences convergencecanchay problems when the holes
are too closely spaced from one another or when the effectivactive index of a mode is too
different from that of a cladding. Due to the nature of theamgion, multipole method is best
suited for the analysis of circular inclusions, howeverasions to treat complex shapes [17]
and sub-inclusions [18, 19] have been demonstrated.

In this paper, we develop an accurate and efficient boundaegial method for the modal
analysis of MOFs. Here we extend the boundary integral noetiniginally developed for the
modal analysis of conventional waveguides [20]. The keyaathges of the proposed method
are the following. For circular inclusions (similarly toglmultipole method) much of the calcu-
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Fig. 1. Three structures studied in the paper. (a) Hollow core MOF withifigs of circular
holes; the pitch ig\ = 2.74um, the hole diameter id = 0.95\ and the core diameter is
dc = 2.5d. (b) Elliptic hollow core MOF with three layers of circular holes; the pitch is
N\ =2um, the hole diameter @ = 0.9/\ and the core principal axis age= 2.3um andb =
4.6um. (c) Solid core MOF with six silver coated elliptical holes; the outer hole praic
axis areap = 0.84um andb, = 0.76um, the inner hole principal axis asg= 0.74um and

by = 0.66um, the pitch isA = 1.5um.

lations are done analytically resulting in a highly accerand rapidly convergent implementa-
tion. Additionally, the method can treat inclusions of #dniy shapes defined by a parametrical
curve. The method is able to treat accurately systems timicoa large numbers of inclusions
(hundreds), due to a well behaved nature of matrix elemesed in the formulation. Particu-
larly, the method is able to treat efficiently very closelgsgd inclusions, which is of particular
interest in the case of hollow core air-guiding fibers. Hinaymmetries of the fiber geometry
can be readily taken into account by the numerical algoritnspeed up modal calculations.

After analyzing its performance, we believe that boundatggral method finds its place
in-between the brute force finite element method and the-gelitical multipole method.
Similarly to the multipole method, boundary integral methiequires small operational mem-
ory and allows almost analytical evaluation of the matremeénts. However, expansions used
in the proposed boundary integral method are more stabletti@se used in the multipole
method. This allows to study systems with a large numberhifrary shaped inclusions, simi-
larly to a finite element method.

We validate our method on various simple structures by coimg#s predictions with those
of the multipole method. We then demonstrate versatilithefmethod by applying it to several
challenging problems. First, we study confinement losséiseo€ore guided modes of a hollow
photonic crystal fiber featuring up to 5 reflector layers Higp). Second, modal fields and
birefringence of a hollow elliptical core fiber with 3 reflectayers Fig. 1(b) are characterized.
Finally, birefringence in plasmonic excitation is studiada solid core microstructured fiber
with metallized elliptical holes Fig. 1(c). We show spilitiin a doubly degenerate plasmonic
mode when hole ellipticity is introduced. Application teepsure sensing is proposed.

2. Mathematical formulation

The schematic of a MOF geometry is shown in Fig. 2. We supguesethie fiber cross-section
is located in thexy plane, while the longitudinal axis z is directed along theffilength. Fiber
cross-section consists of a finite numib&rof homogeneous inclusions of refractive indgx
embedded into a homogeneous background material of reiantiexny. Modal field com-
ponents are taken to have an éfpz— wt) dependence. Hei@ is the propagation constant of
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Fig. 2. a) Schematic of a MOF cross section. b) Schemafeb(s,s')). Green’s function
has a cusp whes— ¢; it also exhibits oscillationsy(= ng —n3). ) Arbitrary shaped
inclusion and a corresponding regularization circle.

the mode andv is the angular frequency, which is related to the free-spae number by
w = cky. Modal effective refractive index is defined as= 3 /ko.

Given the longitudinal componenE, and H, of the modal electromagnetic fields, all the
other field components can be deduced from Maxwells equatioreach of the homogeneous

dielectric regions, individual longitudinal componengisfy the Helmholtz equations:
PR 4 k2 gELY = &
[|2HzCg kOZVCZQHzcg = 0

where 2, = n2, — ne?. Moreover, on the boundaries between various dielectgons the
longitudinal and tangential components of the fields ardicoaus:

£ _ g
O _ @
. ) éc) Fl Z(C) . 9 ég) Pl Z(g)
SCINSCIN b (e — 2 ) = e | ne o ; @)

) (c) (c) ] (9) (9)
c JH JE, AHYI JE;
Ht( ) — Ht(g) = rolyg (ne &i + & a?-l ) - koly (ne (3?’ +8975?1 )

where% is the tangential derivative to the boundary contbm(;ln is the outer normal deriva-
tive, and g g is the dielectric constant of either the inclusion or theddiag. Through-
out the paperH; represents the true magnetic field scaled by the free spapedence
H, — Lo CHtrue fleld

Since the field components satisfy the Helmholtz equatiéhsaf any point in the fiber
cross section, they can be represented by the followingoconntegrals (also known as the
single layer potentials) [20, 21]:

Ey(F) = / e(Fs)G(T, s)dls

/h (T, Fo)dls
L

The contour function®(fs) andh(rs) are called the potential densities [21] and their speci-
fication is sufficient to obtain the longitudinal field comemits. The functiorG(T,Ts) is the
Green’s function of the Helmholtz equation in a uniform mediand it is given by:

3

G(F,Ts) = +HSY (koylr — 7)), @)

4
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whereHél) () is the zeroth-order Hankel function of the first kind. Theueabfy and the contour
of integration depend on the positionf T is located inside of thith inclusion thery = y and
integration is taken along the inclusion’s boundary LK. If ¥ is located in the fiber cladding

N
theny = 4 and integration is taken along all the inclusion boundakies f L&, Finally if 7

is located exactly at the inclusion boundary one can use ftne@wo definitions. We also note
here that such a formulation satisfies the Reichardt camdji0] at infinity so it can treat both
"proper” leaky modes that have fields vanishing at infinityl ahe "improper” leaky modes
that grow at infinity. This can be possible by allowing the gimary part ofy to be positive or
negative.

We assume now that all the individual inclusion boundares loe described by the para-
metric expressions = x¢(s) andy = yk(s), s being a parameter such that0s < 27, andk
being the inclusion number. Inserting Egs. (3) into the icwrity conditions (2), we obtain the
following equations for any point e L():

Ne 2n

1: /ec ¢)Ge(s,§)I0) (¢)d< = z/egk>(§)eg(s,g)3<k>(g)d§
k=17
Ne 2T

2: /hc )Ge(s.§)30)()dd = z/h§k>(§)eg(s,g)3<k>(g)dé
k=1

0

21 on .
L (e [eld) () 2Ce(88) i ) 0Ge(s.) HD)
3 :702 neb/eéw(s’);(f)\]u)(s')dé—/ hgl)(sf)%\](n(sl)dg_ C(S)) _

2n

Vs =P ‘9

21 21
L (D) ¢y 9Cc(SS) ) (1) (¢ 9Ce(s:9) 5
4g neO/hc (€552 (s’)d§+£c0/ec () 284%2) 5 g L L]
l Ne 21 (k) ng(S7s/) ) eC
75 Ne ZlO/hg (S/)T d§+£gZ/eg (Sl)dg_ 2
(5)

1/2
whereJ® (s) = [(d>q</ds)2+ (dyk/ds)z} is the jacobian of the contol This is a system

of four coupled linear integral equations for the scalartoonfunctionseém, eé,k), hék), h(gk),
k=1...N.. The value ofne, for which a nontrivial solution of (5) exists, defines théesefive
refractive index of the fiber mode. Note, that the teﬁ&ﬁsand appear because of the normal
derivatives of the integrals in (3) (the so called doublaerapotenuals) exhibit discontinuities
whenrs — L) [21]. Consider now the discretization of Egs. (5). A direistodetization would
run into difficulties as Hankel functions and their tangahdierivatives become singular when
s — s. Therefore, such a singularity has to be first removed fradhmulation. We start with
the case of circular inclusions.
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2.1. Circular inclusions

For circular inclusions) (s) = ay, whereay is a radius of thekth inclusion. Lety®)(s)

represent any of the contour functioe&é) eé,k)(s’) f;k> (8), or h§k> (8) and lets = tzﬁ(’ﬁ

t=0,...,2n — 1, be an equidistant grid. Slncqe(" ) is a periodic function with a period
2, we can choose the trigonometric interpolation to appraxagy ¥ (s):

2nk)

2n0 -1 1 nk_1
ORI ( S émm)) yM(s). (6)
t m=—nKk

As discussed in [22], the error of such an approximation ebszs exponentially fast with

n(K. Expansion (6) is a key to our formulation of the boundaregnal method. As it will

be shown later, in comparison to the prior formulations thegt Fourier expansion, using the

trigonometric interpolation reduces considerably the etical cost of resolving Egs. (5).
Consider first the integrals along the contati?. These are the most problematic because of

the presence of the singular poiigt=rs. When interpolations of the form (6) are inserted into

the integrals along the contouf!) in (5), these integrals take the following form:

2m

M) / i) i) altf1nge 71' ¢ 0
1D = [ gW(sHo(s g)IV(d)ds ~ z e M [ M (s d)ajds | p(s),
A t;) 2n 5
(7)
0G(s,9) or 0G(s,9)

where®(s,s) stands forG(s,s), . In Appendix A we present details of

the Green’s function derivative evaluation for the arbitreontour shapes. The fourier trans-
forms of ®(s, ) in (7) can be evaluated analytically according to the folfapformulas [23]:

21 .
/ e G(s §)ds = ) Inkoyay Hi (koyay )™

2 .
/ émgae(g ) gg — zi 'kozynJén(kovaj)H&”(kovaj) ems, (8)
0 aj
9G(s |
/t-:”“é )ds’ = — 2 dn(kovay Hit (koyay €™
a;

whereJn() and H,%”() are themth order Bessel and the first kind Hankel functions, while a
prime denotes the derivative with respect to the argumdrd fifst two relations can be derived
from the Graf's addition theorem [24], while the third rédett is simply the lj dgs) derivative

of the first one. Thus, all the integrals in parenthesis ofcéf) be evaluated analytically, and
the only approximation remaining is due to the trigononedtiterpolation ofy(s').

We now consider the integrals along the other contdné%. Particularly, we are looking
for a discrete form of these integrals as a linear functiothefvaluesp¥ (s) defined on the
corresponding equidistant grids=t Z’E) ,t=0,...,2nK — 1. Sincefs is not on the contour
LK, no singularities are present in such integrals. We novingjsish two cases.

First case is when the shortest distad,hﬁ betweerTs and the contout ¥ is relatively small

drjnt‘n < a, which results in a sharply peaked functitris, s') with a width at a half maximum
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~ dr‘n:‘n/ak (see Fig. 2). As before, we approximapé (s') with a trigonometric interpolation
and obtain integrals of the form (7). In this case, howeveramalytical formulas are available
for the fourier transforms present in (7) and we evaluatenth@merically by performing a
Fast Fourier Transform (FFT). The accuracy of FFT shouldigkdr than the accuracy of the
trigonometric interpolation in order to achieve the snsillerror. In fact, because of a cusp in
the Green’s function the number of points used in FFT shoxteed~ ak/dmln

Second case is when the shortest distance betve®md the contout ¥ is relatively large
dﬁnrn > ay, and the functionsp(s,s') may be considered as relatively smooth. When a large
number of inclusions is present, this becomes the most conuase. Here, for the integration

of the functiony® (s)d(s, <), instead of (7) we apply a much simpler trapezoidal rule:

2 2n—1
= [Wesis =y (agmes))itis. O
=

0

The error associated with (9) will be still exponentiallyahj22]. Such a discretization has a
minimal cost as only a single evaluation of the kernel fumtiis needed. The only limitation
imposed on the number of poim&) is that it has to be large enough to resolve all the oscilla-
tions in the Green’s function®(s,s) (see Fig. 2(b)). Particularly, from the functional form of
the Green'’s function (4) it is straightforward to demont&rdnat the number of oscillations in
the interval ofs— s € (0,2m) is ~ koy2ax/(2m) ~ yax/A (whereA is a wavelength of light).
Therefore, the number of points in the boundary discretindias to be larger than the number
of oscillations. In what follows, as an empirical rule, wetise trigonometric interpolation (6)
whend¥ < 6ay, while we use trapezoidal rule (9) wheljik, > 6ay.

When discretizations (7) and (9) are substituted back intangatrix equation is obtained:
A(ng)-X =0. (10)

The vector of unknownX has Ny 2n® elements which are the values af (), egk)(s[),
h(s), hy () defined on their proper discrete lattides 0, ...,2n% — 1, andk = 1,..., Ne.
The elements of matriA(ne) depend non-linearly on.. Modal effective refractive indexes are
defined by the values af. for which the determinant oA(ne) is zero. We note here that, as
in [15], the size of the unknown vectdt and the corresponding matr(ne) could be cut in
half by considering only the first two equations of (2) andhggshe other two to express(s)
andh(s) as a function ofgy(s) andhy(s) at each inclusion. However, this results in more
complex matrix elements.

2.2. Comparison of the code performance with that of a malkimethod

The multipole method is not very different from the boundatggral method proposed here. In
fact, one can derive the multipole method starting from thegral equations (5). If, as in [20],
the coefficients of a fourier expansion of the contour funrtdiey(s') andhy(s) are specified
and the Graf’s addition theorem is applied twice (once tivdeghe so-called Wijngaard expan-
sion and once to transform the the origin of the cylindricalres) the multipole formulation is
obtained.

Particularly, the azimuthal variation of the longitudimdéctric field in the vicinity of an in-

clusion is approximated &5,(s') = Z Cme™s, (and similarly forH,) for some coefficients

cm. HereM is the multipole order and thls field expansion has the samracy as the trigono-
metric interpolation (6) iM ~ nis assumed. The Graf’s addition theorem involves an infinite
series which for consistency must be truncated to the sadezMras the field expansion. This
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induces some error which is independent from the error &sgaowith the field expansion. For
well separated inclusions this last error is smaller thanetfior in the field expansion and the
method works well. As the distance between inclusions @se® the error associated with the
truncated Graf’s series increases and at some point it besbigger than the error associated
with the fields expansion. In such case, the multipole mestads to loose accuracy unless the
order of the field expansion is increased accordingly.

We now estimate the numerical cost of the multipole methothfe calculation of the modes
of a system of\;; identical inclusions of diametef forming a periodic lattice of pitciA (see
Fig. 1(a), for example). In this case the total number of wwkms is N:(2M + 1), and the
number of matrix elemenSizé A(Ne)) ~ N2M?2. One can show that to construct such a matrix
one needs- N2M Bessel function evaluations. In the case when inclusioesvail separated
from each other, the truncated Graf’s series are rapidlyegent wherM 2 koygd. However,
when inclusions become too close to each othes A convergence of the truncated Graf’s
series is achieved only whév > d /(A —d).

We now estimate the numerical cost of the boundary integesthod. Assuming 18, point
discretization of every boundary, the number of unknowna gystem is BcNp. The number
of matrix elements becom&izéA(Ne)) ~ NCZNFZ,. One can show that to construct such a matrix
one needs- (consj - Nng + consk - NcNggeT) Bessel function evaluations. In the case when
inclusions are well separated from each other, as establistthe previous subsection, we only
have to resolve all the oscillations in the Green’s functiesulting in(Neet ~ Np) = koygd.
When inclusions become too close to each othes A the FFT order has to be high enough
to resolve the cusp in the Green’s functidpet = d/(A —d). However, due to the conception
of the method, the number of boundary discretization pairltsstill remain smallN, 2 koyyd
resulting in a considerable performance improvement dwventultipole method.

We summarize the performance of the multipole and bounddegial methods in the Ta-
ble 1. From this table it is clear that both methods show coaipa performances when in-
clusions are well separated. Boundary integral methodekiew greatly outperforms multipole
method in the case of closely separate inclusion both ing@frmemory and simulation time.

Table 1. Performance comparison of the multipole and boundary ihtagtaods.

well separated inclusions Memory Time
Multipole M > koygd ~NZM? |~ NZM
Boundary Integral Np = koygd ~NENZ |~ N2Np
closely separated inclusiods— A Memory Time
Multipole M >d/(A—d) ~NZM? |~ NZM
Boundary Integrall Ny > koygd, Nepr 2 d/(A—d), Nepr 3> Np | ~NENZ | ~ NeNeer

2.3. Arbitrary shaped inclusions

For the arbitrary shaped inclusions, the discretizatimtedure is similar to that used for the
circular inclusions. Particularly, the trigonometricenpolation is now used for the functions
Wh(g) = ()30 (s):

W@y e LTS gmeee | g
Wi (d) = — M=) ) ph(g). (11)
t;) <2”(k) z(k) )

m=—n
Assuming thafs € L), discretization of the integrals along the contoug j is done exactly

as in the previous section, obtaining linear equations imseof theW®(s) by employing
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either a FTT transform or a trapezoidal integration. _
Now consider evaluation of the integrals along the contdlr When interpolations (11) are
substituted into (5), the following expressions are ol&din

o a1 4 a1 2T _
I(”:/W(J)(s’)dD(s,s’)dé: > o 2 e*'ms‘/e'mgdba(s,s')dé wil(s), (12)
t )

0 = m=—n(i 0

where indexa shows that®(s,s) is evaluated along the boundary of an arbitrary shaped in-
clusion. In this case no analytical formulas are availabigtie Fourier transforms @b?(s, s').
Moreover, we can not use FFT efficiently because of the samjylats = s. To circumvent
this problem we introduce a regularization circle follogif20]. Particularly, for evenjth in-
clusion, we consider a circle of a comparable diamafers shown schematically in Fig. 2(c).

We further distinguish two cases. In the first ca®(s,s) represents the Green’s function
G4(s,s). Then, the integral in (12) can be expressed as:

2n 2 2n
/ émGA(s ¢)ds — / ™ [G3(s,¢) — G°(s,§)] de + / emGe(s d)dd,  (13)
0 0 0

where indexc denotes the regularization circle. Second integral in thlethand side can be
evaluated analytically. Functid®® — G® is not singular any more, and its fourier transform can
be evaluated by using FFT. The valueG#¥— G® whens — sis given in the Appendix A.

In the second casep?(s,s) represents the norma{}%’g) or the tangentiaw

o1
derivative of the Green'’s function. Then, the integral iB)(&an be expressed as:

3
J0)()

CDC(s,s’)} ds +

2 2

ims _ ims
/ &M pA(s,¢)dd — / gm {q:a(s,g)_ -
0 0

a 2n
% /eims'dnc(s,s’)dé,
(s)
0
(14)
where®® denotes the corresponding normal or tangential derivafitee Green’s function on
the circle, andl) (s) is the jacobian of the inclusion contoursaiAgain, the second integral on

the righthand side is evaluated analytically while for tla singular functior? — J(ja)j<s) ®¢a

FFT is performed. The value @? — %CDC whens' — sis given in the Appendix A.

We note that our discretization scheme, although closdite®, is significantly different
from the one used in [20]. In that work, instead of a trigonbitogolynomial, Fourier expan-
sion of the potential densitieg) (') is used. In our case, the matrix elements are given by the
single integrals, while in [20] they are given by the doubteifter integrals which are numer-
ically more intensive to evaluate. Finally, the numerig@fficient trapezoidal rule (9) used to
calculate the majority of the matrix elements in our metheaoh not be used in [20] as in their
case Fourier coefficients, rather than the equidistanegai) (s ), are employed.

2.4. Finding the modes

Finding the propagating modes corresponds to finding vadties for which the determinant
of A(neg) in Eq.(10) is zero. This can be done in several ways. One appre the integral
root searching technique [25]. Another approach [15] isdmpute a map of the modulus of
the determinant over the region of interest and then useotteg minima of this map as initial
values for further root refinement. We perform a search ferrfinima of the determinant
along a single line in the complex plane and then use thesd tbinima as initial values
for further root refinement. If the imaginary componentngfis expected to be much smaller
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Fig. 3. Convergence analysis and comparison with the multipole methdldefdinree sim-
ple test structures: (a) six circular holes; diameater 5um, pitch A = 6.75um (b) six
elliptic holes; axisa = 2.5um b= 1.5um, pitch A = 6.75um (c) six metal coated cylin-
ders; outer diametet, = 0.8um, inner oned; = 0.7um, pitch A = 1.5um.

than its real component a search line can be typically chatmry the real axis. Finally, as
a refinement algorithm we use Newton method. Determinarivatee with respect ta is
calculated numerically using first order finite differencéame.

In fact, we consider the determinant only for simple streesuwith less than 10 inclusions.
For the structures with a higher number of inclusions, mdtef the determinant, we consider
the matrixA(ne) smallest eigenvalue. When the determinant goes to zero,esotde smallest
eigenvalue. We find that the smallest eigen value possestea @donvergence zone compared to
that of the determinant. Furthermore, by working with theHlest eigenvalue, one avoids very
large values typical for the determinants. Thus, for comgleuctures, we find the effective
refractive index of a mode by performing root searching fer smallest eigenvalue 8ine).

An important part of the method is inclusion of symmetriescérding to the symmetry, the
modes of a fiber are separated into distinct classes. Ctitmsgaare then performed separately
for every class. Considerable reduction of the overall agtetjional cost is achieved as only a
small part of a structure has to be used in a simulation.

3. Study of the code accuracy for the simpletest structures

In order to validate the method, we perform convergencyyaialnd accuracy comparison
with a multipole method for the three simple test structstesyn in Fig. 3. First, we consider
the structure presented in [15] and shown in Fig. 3(a). Isists of a single ring of six equally
spaced circular holes with diametets= 5um and a pitchA = 6.75um. The glass cladding
is assumed to have refractive indexmgf= 1.45, while the air holes have; = 1. The wave-
length isA = 1.45um. In the Table 3 we present convergence study of the effetivactive
index of one of the low order modes as calculated by the bayridgegral method, as well as
comparison with a multipole method [15]. We remark that foe same number of unknowns
both methods have similar accuracy. As mentioned eaffiexjg to be expected in this case of
well separated inclusions. We also remark that in our implatation choosing 24 discretiza-
tion points per hole results in a ten digit accuracyrigrthis is to be compared with the results
of [14] where 50 points per hole were needed to achieve the sacuracy.

Now, we consider a solid core fiber with all the structuralgmaeters as in the previous case,
except with elliptical holes instead of the circular onese(§ig. 3(b)). The major axis of the
ellipses is taken aa = 5um, while the minor one is taken ds= 3um. Convergence data
for one of the low order modes of this fiber is presented in.[O4r results are presented in
Table 3, including comparison with [17]. The methods agred,wvith a consistency of up to
five significant digits in the real part ¢fie) and two significant digits in the imaginary part.

Our next comparison is with a coated MOF studied in [19]. Thtails of how the bound-
ary integral method equations are modified in such a caseiega th Appendix B. The in-
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Table 2. Effective refractive index of a mode (of a symmetry cfassl as defined in
[15]) of a solid core MOF featuring one ring of six holes (see Fig. 3(a))

Ne

(2n discretization pointsn(®¥) = n))

ne from [15]
(2n+1 multipoles W = n))

1.438376355507+1.546726E-

6i| 1.438366726059+1.373925E-

1.438366534423+1.385777E-

6i| 1.438364999987+1.414928E-

1.438364967361+1.415699E-

6i| 1.438364934757+1.416468E-

1.438364934685+1.416464E-

6i| 1.438364934613+1.416460E-

O 0| N O S

1.438364933832+1.416452E-

Oy Oy Oy Oy 0Oy

6i| 1.438364934245+1.416476E-

[EnY
o

1.438364934213+1.416476E-

6i

Table 3. Effective refractive index of a mode of a solid core MOF fiéaguone ring of
six elliptic inclusions (see Fig. 3(b)). The results are for the fundamemsale where the
nodal line of thek; field is horizontal. For the other polarization the valué46429072+
2.989& — 6i is obtained by us and 446427235+ 2.9601E — 6i by [17].

Ne ne from [17]

n | (2ndiscretization pointsn® = n)) | (2n+1 multipoles ¥ = n))
5 1.446385782+1.7209E-6i 1.446411348+1.4287E-6
6 1.446399691+2.8866E-6i 1.446397187+2.1808E-6
7 1.446399726+2.3623E-6i 1.446396099+2.4601E-6
8 1.446399587+2.3320E-6i 1.446397463+2.3382E-6
9 1.446399533+2.3451E-6i 1.446397587+2.3116E-6
10 1.446399523+2.3453E-6i

clusions are coated with a silver metal having a refractidex ny, = 0.43348004383%

i8.70529497278 ah = 1.45um. Geometry of the structure is shown in Fig. 3(c); it corssist
of six coated cylinders with outer diametafs= 0.8um, inner diameters, = 0.7um, and a
pitchA = 1.5um. The glass cladding is assumed to have refractive indeyx €f1.45, while the
air holes haven. = 1. The convergence analysis is presented in Table 4, imgumbmparison

with [19]. Again we remark that both methods have almost #mesaccuracy.

Table 4. Effective refractive index of a mode of a solid core MOF witke oing of six
coated holes (see Fig. 3(c)). Results are for the fundamental coledgmode.

Ne Ne from [19]

n (2n discretization pointsr(¥) = n)) (2n+1 multipoles Y1 = n))
5 | 1.3185274489424+1.02381886341E:21.3185289649829+1.02387409920E:2i
6 | 1.3185289204692+1.02387219890E+121.3185290956223+1.02387731841E+2i
7 | 1.3185291018934+1.02387720315E+21.3185291032524+1.02387715746E:2i
8 | 1.3185291029932+1.02387712548E121.3185291033515+1.02387715465E+2i
9 | 1.3185291033469+1.02387715225E+21.3185291034001+1.02387715552E+2i
10 | 1.3185291033995+1.02387715563E+21.3185291034042+1.02387715538E+2i
11 | 1.3185291034040+1.02387715536E+121.3185291019762+1.02387703950E+2i
12 | 1.3185291034042+1.02387715538E+2i
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Fig. 4. Hollow core MOF with 5 rings of holes in the reflector. (a) Dispersiorve of the
fundamental mode. (b) Loss as a function of the number of reflegterda

4. Demonstration of the code potential for the study of complex structures

4.1. Loss of the hollow core PCF featuring a large number @éctor layers

As a first example we consider finding the fundamental cordeylimode of a hollow-core PCF
presented in Fig. 1(a). The PCF consists of five rings of tarduoles arranged on a hexagonal
lattice and surrounding a hollow core formed by the two migsings in a fiber center. Overall,
there are 120 holes in the cladding. The hole to hole pit¢h4s2.74um, the hole diameter is
d = 0.95A, and the core diameterds = 2.5d. The glass cladding is assumed to have refractive
index ofng = 1.45, while the refractive index of the air holesris= 1. Dispersion curve for
the fundamental core guided mode of this fiber is shown in 4a) (dashed line). The mini-
mum imaginary part, corresponding to the center of the bapdig obtained at = 1.51um
where we findhg = 0.98451599741954 3.43472E — 8i. For these calculations, the number
of discretization points (® per hole is chosen according to the following distributifor the
central holen = 32, for the five rings of holes starting from the inner one weettaken respec-
tively n = {16,16,14,12 10}. Whenn is increased by 2, that is= {34,18 18 16,14,12} the
change in the value af; equals to BE — 9+ 5.4E — 10i, signifying convergence of the small
imaginary part. Convergence analysis is also performethfoorder of FFT, which must be at
least 256 to guarantee the low value of the overall errois &ha relatively high number and it
increases the computational cost of the matrix elementge¥er note that we are dealing with
a difficult case where the spacing between the inclusions&lsWe also present in Fig. 4(b)
radiation loss of the hollow core PCF as a function of the nemds rings in the reflector. All
the loss calculations are performed at a single wavelehgthl.51um. At this wavelength for
the case of five rings we also show tfi®|, |H;| andS; of the fundamental mode in the outset
of Fig. 4.
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Fig. 5. Birefringence of the fundamental mode of a PCF with elliptic hollowecgb)
Outset:S; fluxes for thex andy polarizations of the fundamental modeAat 1.42um.

4.2. Large birefringence of a hollow elliptical core PCF

Next, we consider the structure presented in Fig. 1(b). tists of three layers of circular
holes arranged on a hexagonal lattice. There are four rgisgites at the center of the fiber
replaced by a central elliptic core. The hole pitct\is- 2um, the hole diameter id = 0.9A,
and the elliptical core has axs= 2.3um andb = 4.6um. The glass cladding is assumed
to have refractive index afig = 1.45, while refractive index of the air holes g = 1. This
structure is similar to the structure of a highly birefringgéiber proposed in [26], except for
the shape of a central hole. In Fig. 5 we present birefringarfithe fundamental mode of this
fiber. Interestingly, the birefringence changes its siguadA = 1.41um. At the outset of this
figure we show thes, fluxes for thex andy polarizations of the fiber fundamental mode at
A = 1.42um. The values for the effective refractive indices at this @lauagth are as follows:
n = 0.93903355+ 6.7418 — 4i andn = 0.93816250+ 2.213%E — 3.

4.3. Loss birefringence of a MOF containing metal coatep&dlal inclusions

Finally, we consider loss birefringence of the fundamem@atle in a MOF containing six ellip-
tical air holes coated with a thin silver layer. The geométrgiven in Fig. 1(c). The inclusions
are coated with silver. The refractive index of silver isccédted from the interpolation of
measured data like in [19]. The glass cladding is assumeav®e & refractive inderg = 1.45,
while the air holes hava. = 1. The hole to hole pitch i& = 1.5um. Six coated elliptical in-
clusions are described by the outer major agis- 0.8um+9J, by = 0.8um— & and the inner
major axisa; = 0.7um-+ d, bj = 0.7um+ 4. In our simulations we usé = 0.04um, which
defines the hole ellipticity 08 = 2|a—b|/(a+ b) = 10%. We now characterize losses of the
two fundamental mode polarizations as a function of the Veaggh.

When ellipticity parameter is taken to zedo= 0 (circular inclusions), both polarizations
are degenerate. Here, loss curve of the fundamental modesented as dashed in Fig. 6. The
wavelength of maximal loss 1.41 corresponds to the point of phase matching of a core guided
mode with a plasmon propagating on the interface betweeersihd glass. When ellipticity is
introduced, wavelengths of phase matching of a fundameatalguided mode with a plasmon
become somewhat different for the two polarizations. Fangxe, ford = 0.04um, dispersion
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Fig. 6. Loss dispersion curves for the two polarizations of the fundéahemde of a MOF
with one ring of metallized elliptic holes. Outs&; fluxes for thex andy polarizations of
the fundamental mode at the wavelengths of the two plasmon excitatios.peak

1.36

curves for the losses of the two polarizations are presantEdy. 6 (solid curves). Plasmonic
resonances for both polarizations are clearly identifiaslenaxima in the modal losses. For
thex-polarization the maximum of losses is} = 1.419um, while for they-polarization it is
at Ay, = 1.407um. The corresponding; fluxes are shown in the outset of Fig. 6. From the flux
distributions it is clear that at the wavelengths of phas&hiag with a plasmon, core guided
mode is well mixed with a plasmonic wave propagating on thessiglass interface.

In principle, by measuring spectral splitting in the plasneacitation peakaA, for the two
polarizations of a fundamental core guided mode, one caisienwetection of the hole ellip-
ticity &. This principle can be used in pressure sensors. Thus, tingtwith a fiber containing
circular metallized inclusions and by compressing the filmeaxially one will induce ellipticity
in the hole structure. Such an ellipticity can then detebtetheasuring splitting in the plasmon
excitation wavelengths. To characterize sensitivity ofespure sensor we define sensitivity as

0(AAp)

Sinm = 75 which in our case giveS= 120nm Assuming that Anmshift between two

plasmonic peaks can be resolved, ellipticity detectiorit lisnestimated at 8104,

5. Conclusion

A high performance boundary integral method for the modalyasis of MOFs is presented.
The method can treat a large number of arbitrary shapedsiocis with boundaries defined by
the individual parametric curves. For circular inclusipimsparticular, majority of the calcula-
tions are done analytically, ensuring high accuracy antiregnvergence. Both solid core and
hollow core fibers can be treated; multilayer (coated) isiclns can be easily accommodated.
The method was tested on several simple problems, and itssbaoellent agreement with
simulations performed by other groups. Moreover, we dernates that the numerical cost of
the boundary integral method is considerably smaller thahdf the multipole method for the
case of closely spaced inclusions, which is of particulgrartance for the case of hollow core
photonic crystal fibers. We have established that unlikentiaétipole method, when spacing

#83398 - $15.00 USD Received 25 May 2007; revised 24 Jul 2007; accepted 25 Jul 2007; published 30 Jul 2007
(C) 2007 OSA 6 August 2007/ Vol. 15, No. 16/ OPTICS EXPRESS 10244



between inclusions decreases no convergence problenas anly the computational cost of
some of the matrix elements (the order of FFT) increasesemuoastrate the above mentioned
advantages of the boundary integral method we applied &+eral challenging problems. First,
we studied confinement loss of a core guided mode of a hollatopiic crystal fiber featuring
large number of reflector layers (5 layers with 120 holes§.o8d, modal birefringence of a
hollow elliptical core fiber with 3 reflector layers was cheteaized. Finally, birefringence of
the plasmon-coupled core modes of a solid core microstredtiiber with metallized elliptical
holes was studied, and application to pressure sensingnopsged.

Appendix A: Normal and tangential derivatives of the Green’s functions
Consider a poiniis(xs, Ys) on a contout described by the parametric expressions:x(s) and
y=Y(s), sheing a parameter such that® < 27t Letry (Xy, Yy ) be an arbitrary point. Omitting

the factor‘i—,r, we consider derivatives of the Hankel functiblél)(koyR), whereR = |fs—Ty|.
The normal derivative ak is given by:

oM (oyR) _
- —H
oo = oy i (koyR).
Considering that,
oR fs—Ty)-0i
Iy = COsTs T 1) = (ls—Tg) Rg) 7
and sincei= —— (Y4, —X;), where the prime denotes the derivative with respegie obtain:

()

on J(s)R

IR _ Yo% =) =X(Ys—¥s)

Thus,

IHY (koyR)
an

s(Ys — Vo) — Ya(Xs

X X¢) (1)
~ oy = e XD R (15)

In the same way, considering thiat= Tls) (X, V%), we obtain:

IH" (kKoyR)
o1

Xs(Xs — Xg ) + Ys(Ys — Vg
J(s)R

— —koy H{Y (koyR). (16)

When the contouk is a circle with radius andry is a point on that contour, the equations (15)
and (16) take the following forms:

dH(()l) (Zakoy‘sin%’)

- . s—¢ (1) s—d
an —koy smz' H; <2alq)y smT ), a7)
and
aH} 2akgy [sin=> _
° ( ’ 2 D = koyism(S ) <2a|q3y sin>—> s ) (18)
Jt 2’sm— 2
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Fig. 7. Schematic of a coated inclusion.

We also note the following limits:

lim _Hél)(koyR) —HV (Zakoy

sinszsl‘ﬂ = %In#:)

s—s

oo a oW (2kysin=E )] 1 kg

s an 30 an O (19)
- -0Hé1)(koyR) a dHo <2al<oy‘sm 2 D L,

gos ot ~J(s) ot N

with k (s) being the curvature df ats.

Appendix B: Coated inclusions

Consider thgth inclusion which is coated with a material of the refragetimdexn, as shown
schematically in Fig. 7. In this case an additional innertoanis present, and four additional
contours functions must be specifiefirs) andh(rs) at both contours on the coating side. When
the boundary conditions are considered at the outer comwtfotinis inclusion, Egs. (5) should
be modified. The first one, corresponding to the continuitiz,obecomes:

/egj>(§)em(s,s')a(s)dsf+/q“')( )Gim(s,€)J(8)dg = z/ ¢)Gy(s.8)(8)dS,

L) L0
(20)

where Lo denotes the outer contoUr D denotes the inner oneo denotes the potential

density at the outer contour aqﬂ denotes the potential density at the inner one (both deasiti
are defined on the coating side). Suppose that the contaicsranlar. Sincés is on the outer
boundary, the first integral in (20) is discretized by using &nalytical formulas in (8) while
the second integral is discretized by performing a FFT.

When the same boundary condition is considered at the inméo@owe obtain:

/ec ¢)Ge(s,8)I(S)ds = /e, ¢)Gnm(s,§)J( )d§+/eéj)(s’)Gm(s,s’)J(s’)dé. 21)
L(J L(J Ly

Again, for circular contours, the integrals along the inc@ntour are evaluated with the help of
analytical formulas in (8) while the one along the outer conis discretized by performing a
FFT. The rest of the equations in (5), are modified in a sinvilay.
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