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C.P. 6079 Succursale centre-ville, Montréal (Qúebec) H3C 3A7, Canada
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Abstract: A boundary integral method [1] for calculating leaky and
guided modes of microstructured optical fibers is presented. The method is
rapidly converging and can handle a large number of inclusions (hundreds)
of arbitrary geometries. Both, solid and hollow core photonic crystal fibers
can be treated efficiently. We demonstrate that for large systems featuring
closely spaced inclusions the computational intensity of the boundary
integral method is significantly smaller than that of the multipole method.
This is of particular importance in the case of hollow core band gap guiding
fibers. We demonstrate versatility of the method by applyingit to several
challenging problems.
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1. Introduction

Microstructured optical fibers (MOFs) have recently attracted much interest because of their
unique optical properties [2, 3, 4, 5]. Light in a MOF is confined by one of the three principal
mechanisms: modified total internal reflection, photonic band gap guidance and antiresonant
guidance. In all the cases, the propagation of light is strongly influenced by the geometry of the
fiber cross section. To fully realize the potential of MOFs through optimal design, availability
of the high performance simulation tools is essential. Although significant progress has been
made in modelling of MOFs, rigorous modal analysis remains challenging, especially in the
case of large number of holes or non-cylindrical hole shapes. Additional complexity comes
from the MOF large refractive-index contrast, fully vectorial modal fields, and leaky nature of
the modes.

A number of modelling techniques has been developed for finding the modes of MOFs -
the plane wave expansion method [6], the localized functionmethod [7] (in a scalar approx-
imation), finite element and finite difference methods [8, 9,10], boundary element methods
[11, 12, 13, 14], and multipole expansion method [15, 16, 17,18, 19]. The finite element and
finite difference methods require volume discretization which demands considerable memory
resources to achieve high accuracy. These methods, however, are well suited to treat complex
shapes. The multipole method experiences convergence and accuracy problems when the holes
are too closely spaced from one another or when the effectiverefractive index of a mode is too
different from that of a cladding. Due to the nature of the expansion, multipole method is best
suited for the analysis of circular inclusions, however extensions to treat complex shapes [17]
and sub-inclusions [18, 19] have been demonstrated.

In this paper, we develop an accurate and efficient boundary integral method for the modal
analysis of MOFs. Here we extend the boundary integral method originally developed for the
modal analysis of conventional waveguides [20]. The key advantages of the proposed method
are the following. For circular inclusions (similarly to the multipole method) much of the calcu-
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Fig. 1. Three structures studied in the paper. (a) Hollow core MOF with fiverings of circular
holes; the pitch isΛ = 2.74µm, the hole diameter isd = 0.95Λ and the core diameter is
dc = 2.5d. (b) Elliptic hollow core MOF with three layers of circular holes; the pitch is
Λ = 2µm, the hole diameter isd = 0.9Λ and the core principal axis area= 2.3µm andb=
4.6µm. (c) Solid core MOF with six silver coated elliptical holes; the outer hole principal
axis areao = 0.84µm andbo = 0.76µm, the inner hole principal axis areai = 0.74µm and
bi = 0.66µm, the pitch isΛ = 1.5µm.

lations are done analytically resulting in a highly accurate and rapidly convergent implementa-
tion. Additionally, the method can treat inclusions of arbitrary shapes defined by a parametrical
curve. The method is able to treat accurately systems that contain a large numbers of inclusions
(hundreds), due to a well behaved nature of matrix elements used in the formulation. Particu-
larly, the method is able to treat efficiently very closely spaced inclusions, which is of particular
interest in the case of hollow core air-guiding fibers. Finally, symmetries of the fiber geometry
can be readily taken into account by the numerical algorithmto speed up modal calculations.

After analyzing its performance, we believe that boundary integral method finds its place
in-between the brute force finite element method and the semi-analytical multipole method.
Similarly to the multipole method, boundary integral method requires small operational mem-
ory and allows almost analytical evaluation of the matrix elements. However, expansions used
in the proposed boundary integral method are more stable than those used in the multipole
method. This allows to study systems with a large number of arbitrary shaped inclusions, simi-
larly to a finite element method.

We validate our method on various simple structures by comparing its predictions with those
of the multipole method. We then demonstrate versatility ofthe method by applying it to several
challenging problems. First, we study confinement losses ofthe core guided modes of a hollow
photonic crystal fiber featuring up to 5 reflector layers Fig.1(a). Second, modal fields and
birefringence of a hollow elliptical core fiber with 3 reflector layers Fig. 1(b) are characterized.
Finally, birefringence in plasmonic excitation is studiedin a solid core microstructured fiber
with metallized elliptical holes Fig. 1(c). We show splitting in a doubly degenerate plasmonic
mode when hole ellipticity is introduced. Application to pressure sensing is proposed.

2. Mathematical formulation

The schematic of a MOF geometry is shown in Fig. 2. We suppose that the fiber cross-section
is located in thexy plane, while the longitudinal axis z is directed along the fiber length. Fiber
cross-section consists of a finite numberNc of homogeneous inclusions of refractive indexnc

embedded into a homogeneous background material of refractive indexng. Modal field com-
ponents are taken to have an expi(βz−ωt) dependence. Hereβ is the propagation constant of
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Fig. 2. a) Schematic of a MOF cross section. b) Schematic ofRe(G(s,s′)). Green’s function
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the mode andω is the angular frequency, which is related to the free-spacewave number by
ω = ck0. Modal effective refractive index is defined asne = β/k0.

Given the longitudinal componentsEz andHz of the modal electromagnetic fields, all the
other field components can be deduced from Maxwells equations. In each of the homogeneous
dielectric regions, individual longitudinal components satisfy the Helmholtz equations:

∇2E(c,g)
z +k0

2γ2
c,gE(c,g)

z = 0

∇2H(c,g)
z +k0

2γ2
c,gH(c,g)

z = 0
, (1)

whereγ2
c,g = n2

c,g − ne
2. Moreover, on the boundaries between various dielectric regions the

longitudinal and tangential components of the fields are continuous:

E(c)
z = E(g)

z

H(c)
z = H(g)

z

E(c)
t = E(g)

t ⇒ i
k0γ2

c

(

ne
∂E(c)

z
∂τ − ∂H(c)

z
∂n

)

= i
k0γ2

g

(

ne
∂E(g)

z
∂τ − ∂H(g)

z
∂n

)

H(c)
t = H(g)

t ⇒ i
k0γ2

c

(

ne
∂H(c)

z
∂τ + εc

∂E(c)
z

∂n

)

= i
k0γ2

g

(

ne
∂H(g)

z
∂τ + εg

∂E(g)
z

∂n

)

, (2)

where ∂
∂τ is the tangential derivative to the boundary contourL, ∂

∂n is the outer normal deriva-
tive, and ε(c,g) is the dielectric constant of either the inclusion or the cladding. Through-
out the paperHz represents the true magnetic field scaled by the free space impedance
Hz = µ0cHtrue f ield

z .
Since the field components satisfy the Helmholtz equations (1), at any point~r in the fiber

cross section, they can be represented by the following contour integrals (also known as the
single layer potentials) [20, 21]:

Ez(~r) =
∫

L

e(~rs)G(~r,~rs)dls

Hz(~r) =
∫

L

h(~rs)G(~r,~rs)dls
. (3)

The contour functionse(~rs) andh(~rs) are called the potential densities [21] and their speci-
fication is sufficient to obtain the longitudinal field components. The functionG(~r,~rs) is the
Green’s function of the Helmholtz equation in a uniform medium and it is given by:

G(~r,~rs) =
i
4

H(1)
0 (k0γ|~r −~rs|), (4)
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whereH(1)
0 () is the zeroth-order Hankel function of the first kind. The value ofγ and the contour

of integration depend on the position~r. If~r is located inside of thekth inclusion thenγ = γc and
integration is taken along the inclusion’s boundaryL = L(k). If ~r is located in the fiber cladding

thenγ = γg and integration is taken along all the inclusion boundariesL =
Nc

∑
k=1

L(k). Finally if~r

is located exactly at the inclusion boundary one can use any of the two definitions. We also note
here that such a formulation satisfies the Reichardt condition [20] at infinity so it can treat both
”proper” leaky modes that have fields vanishing at infinity and the ”improper” leaky modes
that grow at infinity. This can be possible by allowing the imaginary part ofγg to be positive or
negative.

We assume now that all the individual inclusion boundaries can be described by the para-
metric expressionsx = xk(s) andy = yk(s), s being a parameter such that 0≤ s≤ 2π, andk
being the inclusion number. Inserting Eqs. (3) into the continuity conditions (2), we obtain the
following equations for any point~rs ∈ L( j):

1 :

2π
∫

0

e( j)
c (s′)Gc(s,s

′)J( j)(s′)ds′ =
Nc

∑
k=1

2π
∫

0

e(k)
g (s′)Gg(s,s

′)J(k)(s′)ds′

2 :

2π
∫

0

h( j)
c (s′)Gc(s,s

′)J( j)(s′)ds′ =
Nc

∑
k=1

2π
∫

0

h(k)
g (s′)Gg(s,s

′)J(k)(s′)ds′

3 :
1
γ2
c



ne

2π
∫

0

e( j)
c (s′)

∂Gc(s,s′)
∂τ

J( j)(s′)ds′−

2π
∫

0

h( j)
c (s′)

∂Gc(s,s′)
∂n

J( j)(s′)ds′−
h( j)

c (s)
2



=

1
γ2
g



ne

Nc

∑
k=1

2π
∫

0

e(k)
g (s′)

∂Gg(s,s′)

∂τ
J(k)(s′)ds′−

Nc

∑
k=1

2π
∫

0

h(k)
g (s′)

∂Gg(s,s′)

∂n
J(k)(s′)ds′ +

h( j)
c (s)

2





4 :
1
γ2
c



ne

2π
∫

0

h( j)
c (s′)

∂Gc(s,s′)
∂τ

J( j)(s′)ds′ + εc

2π
∫

0

e( j)
c (s′)

∂Gc(s,s′)
∂n

J( j)(s′)ds′ + εc
e( j)

c (s)
2



=

1
γ2
g



ne

Nc

∑
k=1

2π
∫

0

h(k)
g (s′)

∂Gg(s,s′)

∂τ
J(k)(s′)ds′ + εg

Nc

∑
k=1

2π
∫

0

e(k)
g (s′)

∂Gg(s,s′)

∂n
J(k)(s′)ds′− εg

e( j)
c (s)

2





,

(5)

whereJ(k)(s) =
[

(dxk/ds)2 +(dyk/ds)2
]1/2

is the jacobian of the contourk. This is a system

of four coupled linear integral equations for the scalar contour functionse(k)
c , e(k)

g , h(k)
c , h(k)

g ,
k = 1. . .Nc. The value ofne, for which a nontrivial solution of (5) exists, defines the effective
refractive index of the fiber mode. Note, that the termse(s)

2 andh(s)
2 appear because of the normal

derivatives of the integrals in (3) (the so called double layer potentials) exhibit discontinuities
when~rs → L( j) [21]. Consider now the discretization of Eqs. (5). A direct discretization would
run into difficulties as Hankel functions and their tangential derivatives become singular when
s′ → s. Therefore, such a singularity has to be first removed from the formulation. We start with
the case of circular inclusions.
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2.1. Circular inclusions

For circular inclusionsJ(k)(s) = ak, whereak is a radius of thekth inclusion. Letψ(k)(s′)

represent any of the contour functionse(k)
c (s′), e(k)

g (s′), h(k)
c (s′), or h(k)

g (s′) and letst = t 2π
2n(k) ,

t = 0, . . . ,2n(k) −1, be an equidistant grid. Sinceψ(k)(s′) is a periodic function with a period
2π, we can choose the trigonometric interpolation to approximateψ(k)(s′):

ψ(k)(s′) =
2n(k)−1

∑
t=0

(

1

2n(k)

n(k)−1

∑
m=−n(k)

eim(s′−st )

)

ψ(k)(st). (6)

As discussed in [22], the error of such an approximation decreases exponentially fast with
n(k). Expansion (6) is a key to our formulation of the boundary integral method. As it will
be shown later, in comparison to the prior formulations thatuse Fourier expansion, using the
trigonometric interpolation reduces considerably the numerical cost of resolving Eqs. (5).

Consider first the integrals along the contourL( j). These are the most problematic because of
the presence of the singular point~rs′ =~rs. When interpolations of the form (6) are inserted into
the integrals along the contourL( j) in (5), these integrals take the following form:

I ( j) =

2π
∫

0

ψ( j)(s′)Φ(s,s′)J( j)(s′)ds′ ≃
2n( j)−1

∑
t=0





1
2n

n( j)−1

∑
m=−n( j)

e−imst

2π
∫

0

eims′Φ(s,s′)a jds′



ψ( j)(st),

(7)

whereΦ(s,s′) stands forG(s,s′),
∂G(s,s′)

∂n
or

∂G(s,s′)
∂τ

. In Appendix A we present details of

the Green’s function derivative evaluation for the arbitrary contour shapes. The fourier trans-
forms ofΦ(s,s′) in (7) can be evaluated analytically according to the following formulas [23]:

2π
∫

0

eims′G(s,s′)ds′ =
iπ
2

Jm(k0γa j)H
(1)
m (k0γa j)e

ims

2π
∫

0

eims′ ∂G(s,s′)
∂n

ds′ =

[

−
1

2a j
+

ik0γπ
2

J′m(k0γa j)H
(1)
m (k0γa j)

]

eims

2π
∫

0

eims′ ∂G(s,s′)
∂τ

ds′ = −
mπ
2a j

Jm(k0γa j)H
(1)
m (k0γa j)e

ims

, (8)

whereJm() andH(1)
m () are themth order Bessel and the first kind Hankel functions, while a

prime denotes the derivative with respect to the argument. The first two relations can be derived
from the Graf’s addition theorem [24], while the third relation is simply the (1a j

d
ds) derivative

of the first one. Thus, all the integrals in parenthesis of (7)can be evaluated analytically, and
the only approximation remaining is due to the trigonometric interpolation ofψ(s′).

We now consider the integrals along the other contoursL(k)
k6= j . Particularly, we are looking

for a discrete form of these integrals as a linear function ofthe valuesψ(k)(st) defined on the
corresponding equidistant gridsst = t 2π

2n(k) , t = 0, . . . ,2n(k) −1. Since~rs is not on the contour

L(k), no singularities are present in such integrals. We now distinguish two cases.
First case is when the shortest distanced j,k

min between~rs and the contourL(k) is relatively small

d j,k
min . ak, which results in a sharply peaked functionΦ(s,s′) with a width at a half maximum
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∼ d j,k
min/ak (see Fig. 2). As before, we approximateψ(k)(s′) with a trigonometric interpolation

and obtain integrals of the form (7). In this case, however, no analytical formulas are available
for the fourier transforms present in (7) and we evaluate them numerically by performing a
Fast Fourier Transform (FFT). The accuracy of FFT should be higher than the accuracy of the
trigonometric interpolation in order to achieve the smallest error. In fact, because of a cusp in
the Green’s function the number of points used in FFT should exceed∼ ak/d j,k

min.
Second case is when the shortest distance between~rs and the contourL(k) is relatively large

d j,k
min & ak, and the functionsΦ(s,s′) may be considered as relatively smooth. When a large

number of inclusions is present, this becomes the most common case. Here, for the integration
of the functionψ(k)(s′)Φ(s,s′), instead of (7) we apply a much simpler trapezoidal rule:

I (k) =

2π
∫

0

ψ(k)(s′)Φ(s,s′)J(k)(s′)ds′ ≃
2n(k)−1

∑
t=0

(

ak
2π

2n(k)
Φ(s,st)

)

ψ(k)(st). (9)

The error associated with (9) will be still exponentially small [22]. Such a discretization has a
minimal cost as only a single evaluation of the kernel function is needed. The only limitation
imposed on the number of pointsn(k) is that it has to be large enough to resolve all the oscilla-
tions in the Green’s functionsΦ(s,s′) (see Fig. 2(b)). Particularly, from the functional form of
the Green’s function (4) it is straightforward to demonstrate that the number of oscillations in
the interval ofs− s′ ∈ (0,2π) is ∼ k0γ2ak/(2π) ∼ γak/λ (whereλ is a wavelength of light).
Therefore, the number of points in the boundary discretization has to be larger than the number
of oscillations. In what follows, as an empirical rule, we use the trigonometric interpolation (6)
whend j,k

min < 6ak, while we use trapezoidal rule (9) whend j,k
min ≥ 6ak.

When discretizations (7) and (9) are substituted back into (5), matrix equation is obtained:

A(ne) ·X = 0. (10)

The vector of unknownsX has 4Nc ∑2n(k) elements which are the values ofe(k)
c (st), e(k)

g (st),

h(k)
c (st), h(k)

g (st) defined on their proper discrete latticest = 0, . . . ,2n(k) −1, andk = 1, . . . ,Nc.
The elements of matrixA(ne) depend non-linearly onne. Modal effective refractive indexes are
defined by the values ofne for which the determinant ofA(ne) is zero. We note here that, as
in [15], the size of the unknown vectorX and the corresponding matrixA(ne) could be cut in
half by considering only the first two equations of (2) and using the other two to expressec(st)
andhc(st) as a function ofeg(st) andhg(st) at each inclusion. However, this results in more
complex matrix elements.

2.2. Comparison of the code performance with that of a multipole method

The multipole method is not very different from the boundaryintegral method proposed here. In
fact, one can derive the multipole method starting from the integral equations (5). If, as in [20],
the coefficients of a fourier expansion of the contour functionseg(s′) andhg(s′) are specified
and the Graf’s addition theorem is applied twice (once to derive the so-called Wijngaard expan-
sion and once to transform the the origin of the cylindrical waves) the multipole formulation is
obtained.

Particularly, the azimuthal variation of the longitudinalelectric field in the vicinity of an in-

clusion is approximated asEz(s′) =
M
∑

m=−M
cmeims′ , (and similarly forHz) for some coefficients

cm. HereM is the multipole order and this field expansion has the same accuracy as the trigono-
metric interpolation (6) ifM ≃ n is assumed. The Graf’s addition theorem involves an infinite
series which for consistency must be truncated to the same orderM as the field expansion. This
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induces some error which is independent from the error associated with the field expansion. For
well separated inclusions this last error is smaller than the error in the field expansion and the
method works well. As the distance between inclusions decreases, the error associated with the
truncated Graf’s series increases and at some point it becomes bigger than the error associated
with the fields expansion. In such case, the multipole methodstarts to loose accuracy unless the
order of the field expansion is increased accordingly.

We now estimate the numerical cost of the multipole method for the calculation of the modes
of a system ofNc identical inclusions of diameterd forming a periodic lattice of pitchλ (see
Fig. 1(a), for example). In this case the total number of unknowns is 2Nc(2M + 1), and the
number of matrix elementsSize(A(Ne))∼ N2

c M2. One can show that to construct such a matrix
one needs∼ N2

c M Bessel function evaluations. In the case when inclusions are well separated
from each other, the truncated Graf’s series are rapidly convergent whenM & k0γgd. However,
when inclusions become too close to each otherd → Λ convergence of the truncated Graf’s
series is achieved only whenM & d/(Λ−d).

We now estimate the numerical cost of the boundary integral method. Assuming 2Np point
discretization of every boundary, the number of unknowns ina system is 8NcNp. The number
of matrix elements becomesSize(A(Ne))∼N2

c N2
p. One can show that to construct such a matrix

one needs∼ (const1 ·N2
c Np + const2 ·NcNFFT) Bessel function evaluations. In the case when

inclusions are well separated from each other, as established in the previous subsection, we only
have to resolve all the oscillations in the Green’s functionresulting in(NFFT ∼ Np) & k0γgd.
When inclusions become too close to each otherd → Λ the FFT order has to be high enough
to resolve the cusp in the Green’s functionNFFT & d/(Λ−d). However, due to the conception
of the method, the number of boundary discretization pointswill still remain smallNp & k0γgd
resulting in a considerable performance improvement over the multipole method.

We summarize the performance of the multipole and boundary integral methods in the Ta-
ble 1. From this table it is clear that both methods show comparable performances when in-
clusions are well separated. Boundary integral method, however, greatly outperforms multipole
method in the case of closely separate inclusion both in terms of memory and simulation time.

Table 1. Performance comparison of the multipole and boundary integral methods.

well separated inclusions Memory Time
Multipole M & k0γgd ∼ N2

c M2 ∼ N2
c M

Boundary Integral Np & k0γgd ∼ N2
c N2

p ∼ N2
c Np

closely separated inclusionsd → Λ Memory Time
Multipole M & d/(Λ−d) ∼ N2

c M2 ∼ N2
c M

Boundary Integral Np & k0γgd, NFFT & d/(Λ−d), NFFT ≫ Np ∼ N2
c N2

p ∼ NcNFFT

2.3. Arbitrary shaped inclusions

For the arbitrary shaped inclusions, the discretization procedure is similar to that used for the
circular inclusions. Particularly, the trigonometric interpolation is now used for the functions
Ψ(k)(s′) = ψ(k)(s′)J(k)(s′):

Ψ(k)(s′) =
2n(k)−1

∑
t=0

(

1

2n(k)

n(k)−1

∑
m=−n(k)

eim(s′−st )

)

Ψ(k)(st). (11)

Assuming that~rs ∈ L( j), discretization of the integrals along the contoursL(k)
k6= j is done exactly

as in the previous section, obtaining linear equations in terms of theΨ(k)(st) by employing
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either a FTT transform or a trapezoidal integration.
Now consider evaluation of the integrals along the contourL( j). When interpolations (11) are

substituted into (5), the following expressions are obtained:

I ( j) =

2π
∫

0

Ψ( j)(s′)Φ(s,s′)ds′ ≃
2n( j)−1

∑
t=0





1

2n( j)

n( j)−1

∑
m=−n( j)

e−imst

2π
∫

0

eims′Φa(s,s′)ds′



Ψ( j)(st), (12)

where indexa shows thatΦ(s,s′) is evaluated along the boundary of an arbitrary shaped in-
clusion. In this case no analytical formulas are available for the Fourier transforms ofΦa(s,s′).
Moreover, we can not use FFT efficiently because of the singularity at s= s′. To circumvent
this problem we introduce a regularization circle following [20]. Particularly, for everyjth in-
clusion, we consider a circle of a comparable diametera j as shown schematically in Fig. 2(c).

We further distinguish two cases. In the first case,Φa(s,s′) represents the Green’s function
Ga(s,s′). Then, the integral in (12) can be expressed as:

2π
∫

0

eims′Ga(s,s′)ds′ =

2π
∫

0

eims′ [Ga(s,s′)−Gc(s,s′)
]

ds′ +

2π
∫

0

eims′Gc(s,s′)ds′, (13)

where indexc denotes the regularization circle. Second integral in the righthand side can be
evaluated analytically. FunctionGa−Gc is not singular any more, and its fourier transform can
be evaluated by using FFT. The value ofGa−Gc whens′ → s is given in the Appendix A.

In the second case,Φa(s,s′) represents the normal
∂G(s,s′)

∂n
or the tangential

∂G(s,s′)
∂τ

derivative of the Green’s function. Then, the integral in (12) can be expressed as:

2π
∫

0

eims′Φa(s,s′)ds′ =

2π
∫

0

eims′
[

Φa(s,s′)−
a j

J( j)(s)
Φc(s,s′)

]

ds′ +
a j

J( j)(s)

2π
∫

0

eims′Φc(s,s′)ds′,

(14)
whereΦc denotes the corresponding normal or tangential derivativeof the Green’s function on
the circle, andJ( j)(s) is the jacobian of the inclusion contour ats. Again, the second integral on
the righthand side is evaluated analytically while for the non singular functionΦa−

a j

J( j)(s)
Φc a

FFT is performed. The value ofΦa−
a j

J(s)Φc whens′ → s is given in the Appendix A.
We note that our discretization scheme, although closely related, is significantly different

from the one used in [20]. In that work, instead of a trigonometric polynomial, Fourier expan-
sion of the potential densitiesψ(k)(s′) is used. In our case, the matrix elements are given by the
single integrals, while in [20] they are given by the double Fourier integrals which are numer-
ically more intensive to evaluate. Finally, the numerically efficient trapezoidal rule (9) used to
calculate the majority of the matrix elements in our method,can not be used in [20] as in their
case Fourier coefficients, rather than the equidistant valuesψ(k)(st), are employed.

2.4. Finding the modes

Finding the propagating modes corresponds to finding valuesof ne for which the determinant
of A(ne) in Eq.(10) is zero. This can be done in several ways. One approach is the integral
root searching technique [25]. Another approach [15] is to compute a map of the modulus of
the determinant over the region of interest and then use the local minima of this map as initial
values for further root refinement. We perform a search for the minima of the determinant
along a single line in the complex plane and then use these local minima as initial values
for further root refinement. If the imaginary component ofne is expected to be much smaller
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Fig. 3. Convergence analysis and comparison with the multipole method forthe three sim-
ple test structures: (a) six circular holes; diameterd = 5µm, pitch Λ = 6.75µm (b) six
elliptic holes; axisa = 2.5µm b= 1.5µm, pitch Λ = 6.75µm (c) six metal coated cylin-
ders; outer diameterdo = 0.8µm, inner onedi = 0.7µm, pitchΛ = 1.5µm.

than its real component a search line can be typically chosenalong the real axis. Finally, as
a refinement algorithm we use Newton method. Determinant derivative with respect tone is
calculated numerically using first order finite difference scheme.

In fact, we consider the determinant only for simple structures with less than 10 inclusions.
For the structures with a higher number of inclusions, instead of the determinant, we consider
the matrixA(ne) smallest eigenvalue. When the determinant goes to zero, so does the smallest
eigenvalue. We find that the smallest eigen value possess a wider convergence zone compared to
that of the determinant. Furthermore, by working with the smallest eigenvalue, one avoids very
large values typical for the determinants. Thus, for complex structures, we find the effective
refractive index of a mode by performing root searching for the smallest eigenvalue ofA(ne).

An important part of the method is inclusion of symmetries. According to the symmetry, the
modes of a fiber are separated into distinct classes. Calculations are then performed separately
for every class. Considerable reduction of the overall computational cost is achieved as only a
small part of a structure has to be used in a simulation.

3. Study of the code accuracy for the simple test structures

In order to validate the method, we perform convergency analysis and accuracy comparison
with a multipole method for the three simple test structuresshown in Fig. 3. First, we consider
the structure presented in [15] and shown in Fig. 3(a). Is consists of a single ring of six equally
spaced circular holes with diametersd = 5µm and a pitchΛ = 6.75µm. The glass cladding
is assumed to have refractive index ofng = 1.45, while the air holes havenc = 1. The wave-
length isλ = 1.45µm. In the Table 3 we present convergence study of the effectiverefractive
index of one of the low order modes as calculated by the boundary integral method, as well as
comparison with a multipole method [15]. We remark that for the same number of unknowns
both methods have similar accuracy. As mentioned earlier, this is to be expected in this case of
well separated inclusions. We also remark that in our implementation choosing 24 discretiza-
tion points per hole results in a ten digit accuracy forne; this is to be compared with the results
of [14] where 50 points per hole were needed to achieve the same accuracy.

Now, we consider a solid core fiber with all the structural parameters as in the previous case,
except with elliptical holes instead of the circular ones (see Fig. 3(b)). The major axis of the
ellipses is taken asa = 5µm, while the minor one is taken asb = 3µm. Convergence data
for one of the low order modes of this fiber is presented in [17]. Our results are presented in
Table 3, including comparison with [17]. The methods agree well, with a consistency of up to
five significant digits in the real part of(ne) and two significant digits in the imaginary part.

Our next comparison is with a coated MOF studied in [19]. The details of how the bound-
ary integral method equations are modified in such a case are given in Appendix B. The in-
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Table 2. Effective refractive index of a mode (of a symmetry classp = 1 as defined in
[15]) of a solid core MOF featuring one ring of six holes (see Fig. 3(a)).

ne ne from [15]
n (2n discretization points (n(k) = n)) (2n+1 multipoles (M = n))
5 1.438376355507+1.546726E-6i 1.438366726059+1.373925E-6i
6 1.438366534423+1.385777E-6i 1.438364999987+1.414928E-6i
7 1.438364967361+1.415699E-6i 1.438364934757+1.416468E-6i
8 1.438364934685+1.416464E-6i 1.438364934613+1.416460E-6i
9 1.438364933832+1.416452E-6i 1.438364934245+1.416476E-6i
10 1.438364934213+1.416476E-6i —————

Table 3. Effective refractive index of a mode of a solid core MOF featuring one ring of
six elliptic inclusions (see Fig. 3(b)). The results are for the fundamentalmode where the
nodal line of theEz field is horizontal. For the other polarization the value 1.446429072+
2.9898E−6i is obtained by us and 1.446427235+2.9601E−6i by [17].

ne ne from [17]
n (2n discretization points (n(k) = n)) (2n+1 multipoles (M = n))
5 1.446385782+1.7209E-6i 1.446411348+1.4287E-6i
6 1.446399691+2.8866E-6i 1.446397187+2.1808E-6i
7 1.446399726+2.3623E-6i 1.446396099+2.4601E-6i
8 1.446399587+2.3320E-6i 1.446397463+2.3382E-6i
9 1.446399533+2.3451E-6i 1.446397587+2.3116E-6i
10 1.446399523+2.3453E-6i ————

clusions are coated with a silver metal having a refractive index nm = 0.433480043837+
i8.70529497278 atλ = 1.45µm. Geometry of the structure is shown in Fig. 3(c); it consists
of six coated cylinders with outer diametersdo = 0.8µm, inner diametersdi = 0.7µm, and a
pitchΛ = 1.5µm. The glass cladding is assumed to have refractive index ofng = 1.45, while the
air holes havenc = 1. The convergence analysis is presented in Table 4, including comparison
with [19]. Again we remark that both methods have almost the same accuracy.

Table 4. Effective refractive index of a mode of a solid core MOF with one ring of six
coated holes (see Fig. 3(c)). Results are for the fundamental core guided mode.

ne ne from [19]
n (2n discretization points (n(k) = n)) (2n+1 multipoles (M = n))
5 1.3185274489424+1.02381886341E-2i1.3185289649829+1.02387409920E-2i
6 1.3185289204692+1.02387219890E-2i1.3185290956223+1.02387731841E-2i
7 1.3185291018934+1.02387720315E-2i1.3185291032524+1.02387715746E-2i
8 1.3185291029932+1.02387712548E-2i1.3185291033515+1.02387715465E-2i
9 1.3185291033469+1.02387715225E-2i1.3185291034001+1.02387715552E-2i
10 1.3185291033995+1.02387715563E-2i1.3185291034042+1.02387715538E-2i
11 1.3185291034040+1.02387715536E-2i1.3185291019762+1.02387703950E-2i
12 1.3185291034042+1.02387715538E-2i —————
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Fig. 4. Hollow core MOF with 5 rings of holes in the reflector. (a) Dispersioncurve of the
fundamental mode. (b) Loss as a function of the number of reflector layers.

4. Demonstration of the code potential for the study of complex structures

4.1. Loss of the hollow core PCF featuring a large number of reflector layers

As a first example we consider finding the fundamental core guided mode of a hollow-core PCF
presented in Fig. 1(a). The PCF consists of five rings of circular holes arranged on a hexagonal
lattice and surrounding a hollow core formed by the two missing rings in a fiber center. Overall,
there are 120 holes in the cladding. The hole to hole pitch isΛ = 2.74µm, the hole diameter is
d = 0.95Λ, and the core diameter isdc = 2.5d. The glass cladding is assumed to have refractive
index ofng = 1.45, while the refractive index of the air holes isnc = 1. Dispersion curve for
the fundamental core guided mode of this fiber is shown in Fig.4(a) (dashed line). The mini-
mum imaginary part, corresponding to the center of the bandgap, is obtained atλ = 1.51µm
where we findne = 0.98451599741954+ 3.434721E−8i. For these calculations, the number
of discretization points (2n) per hole is chosen according to the following distribution: for the
central holen= 32, for the five rings of holes starting from the inner one we have taken respec-
tively n = {16,16,14,12,10}. Whenn is increased by 2, that isn = {34,18,18,16,14,12} the
change in the value ofne equals to 2.6E−9+5.4E−10i, signifying convergence of the small
imaginary part. Convergence analysis is also performed forthe order of FFT, which must be at
least 256 to guarantee the low value of the overall error. This is a relatively high number and it
increases the computational cost of the matrix elements, however note that we are dealing with
a difficult case where the spacing between the inclusions is small. We also present in Fig. 4(b)
radiation loss of the hollow core PCF as a function of the number of rings in the reflector. All
the loss calculations are performed at a single wavelengthλ = 1.51µm. At this wavelength for
the case of five rings we also show the|Ez|, |Hz| andSz of the fundamental mode in the outset
of Fig. 4.
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Fig. 5. Birefringence of the fundamental mode of a PCF with elliptic hollow core. (b)
Outset:Sz fluxes for thex andy polarizations of the fundamental mode atλ = 1.42µm.

4.2. Large birefringence of a hollow elliptical core PCF

Next, we consider the structure presented in Fig. 1(b). It consists of three layers of circular
holes arranged on a hexagonal lattice. There are four missing holes at the center of the fiber
replaced by a central elliptic core. The hole pitch isΛ = 2µm, the hole diameter isd = 0.9Λ,
and the elliptical core has axisa = 2.3µm and b = 4.6µm. The glass cladding is assumed
to have refractive index ofng = 1.45, while refractive index of the air holes isnc = 1. This
structure is similar to the structure of a highly birefringent fiber proposed in [26], except for
the shape of a central hole. In Fig. 5 we present birefringence of the fundamental mode of this
fiber. Interestingly, the birefringence changes its sign aroundλ = 1.41µm. At the outset of this
figure we show theSz fluxes for thex andy polarizations of the fiber fundamental mode at
λ = 1.42µm. The values for the effective refractive indices at this wavelength are as follows:
nx

e = 0.93903355+6.7418E−4i andny
e = 0.93816250+2.2133E−3i.

4.3. Loss birefringence of a MOF containing metal coated elliptical inclusions

Finally, we consider loss birefringence of the fundamentalmode in a MOF containing six ellip-
tical air holes coated with a thin silver layer. The geometryis given in Fig. 1(c). The inclusions
are coated with silver. The refractive index of silver is calculated from the interpolation of
measured data like in [19]. The glass cladding is assumed to have a refractive indexng = 1.45,
while the air holes havenc = 1. The hole to hole pitch isΛ = 1.5µm. Six coated elliptical in-
clusions are described by the outer major axisao = 0.8µm+δ , bo = 0.8µm−δ and the inner
major axisai = 0.7µm+ δ , bi = 0.7µm+ δ . In our simulations we useδ = 0.04µm, which
defines the hole ellipticity ofδ = 2|a−b|/(a+ b) = 10%. We now characterize losses of the
two fundamental mode polarizations as a function of the wavelength.

When ellipticity parameter is taken to zeroδ = 0 (circular inclusions), both polarizations
are degenerate. Here, loss curve of the fundamental mode is presented as dashed in Fig. 6. The
wavelength of maximal loss∼ 1.41 corresponds to the point of phase matching of a core guided
mode with a plasmon propagating on the interface between silver and glass. When ellipticity is
introduced, wavelengths of phase matching of a fundamentalcore guided mode with a plasmon
become somewhat different for the two polarizations. For example, forδ = 0.04µm, dispersion
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Fig. 6. Loss dispersion curves for the two polarizations of the fundamental mode of a MOF
with one ring of metallized elliptic holes. Outset:Sz fluxes for thex andy polarizations of
the fundamental mode at the wavelengths of the two plasmon excitation peaks.

curves for the losses of the two polarizations are presentedin Fig. 6 (solid curves). Plasmonic
resonances for both polarizations are clearly identifiableas maxima in the modal losses. For
thex-polarization the maximum of losses is atλm = 1.419µm, while for they-polarization it is
at λm = 1.407µm. The correspondingSz fluxes are shown in the outset of Fig. 6. From the flux
distributions it is clear that at the wavelengths of phase matching with a plasmon, core guided
mode is well mixed with a plasmonic wave propagating on the silver-glass interface.

In principle, by measuring spectral splitting in the plasmon excitation peaks∆λp for the two
polarizations of a fundamental core guided mode, one can envision detection of the hole ellip-
ticity δ . This principle can be used in pressure sensors. Thus, by starting with a fiber containing
circular metallized inclusions and by compressing the fiberuniaxially one will induce ellipticity
in the hole structure. Such an ellipticity can then detectedby measuring splitting in the plasmon
excitation wavelengths. To characterize sensitivity of a pressure sensor we define sensitivity as

Sλ [nm] =
∂ (∆λp)

∂δ
, which in our case givesS= 120nm. Assuming that 0.1nmshift between two

plasmonic peaks can be resolved, ellipticity detection limit is estimated at 8·10−4.

5. Conclusion

A high performance boundary integral method for the modal analysis of MOFs is presented.
The method can treat a large number of arbitrary shaped inclusions with boundaries defined by
the individual parametric curves. For circular inclusions, in particular, majority of the calcula-
tions are done analytically, ensuring high accuracy and rapid convergence. Both solid core and
hollow core fibers can be treated; multilayer (coated) inclusions can be easily accommodated.
The method was tested on several simple problems, and it shows excellent agreement with
simulations performed by other groups. Moreover, we demonstrated that the numerical cost of
the boundary integral method is considerably smaller than that of the multipole method for the
case of closely spaced inclusions, which is of particular importance for the case of hollow core
photonic crystal fibers. We have established that unlike themultipole method, when spacing
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between inclusions decreases no convergence problems arise; only the computational cost of
some of the matrix elements (the order of FFT) increases. To demonstrate the above mentioned
advantages of the boundary integral method we applied it to several challenging problems. First,
we studied confinement loss of a core guided mode of a hollow photonic crystal fiber featuring
large number of reflector layers (5 layers with 120 holes). Second, modal birefringence of a
hollow elliptical core fiber with 3 reflector layers was characterized. Finally, birefringence of
the plasmon-coupled core modes of a solid core microstructured fiber with metallized elliptical
holes was studied, and application to pressure sensing was proposed.

Appendix A: Normal and tangential derivatives of the Green’s functions

Consider a point~rs(xs,ys) on a contourL described by the parametric expressions:x= x(s) and
y= y(s), sbeing a parameter such that 0≤ s≤ 2π. Let~rs′(xs′ ,ys′) be an arbitrary point. Omitting

the factor i
4, we consider derivatives of the Hankel functionH(1)

0 (k0γR), whereR= |~rs−~rs′ |.
The normal derivative at~rs is given by:

∂H(1)
0 (k0γR)

∂n
= −k0γ

∂R
∂n

H(1)
1 (k0γR).

Considering that,
∂R
∂n

= cos(~rs−~rs′ ,~n) =
(~rs−~rs′) ·~n

R
,

and since~n=
1

J(s)
(y′s,−x′s), where the prime denotes the derivative with respect tos, we obtain:

∂R
∂n

=
y′s(xs−xs′)−x′s(ys−ys′)

J(s)R
.

Thus,
∂H(1)

0 (k0γR)

∂n
= k0γ

x′s(ys−ys′)−y′s(xs−xs′)

J(s)R
H(1)

1 (k0γR). (15)

In the same way, considering that~τ =
1

J(s)
(x′s,y

′
s), we obtain:

∂H(1)
0 (k0γR)

∂τ
= −k0γ

x′s(xs−xs′)+y′s(ys−ys′)

J(s)R
H(1)

1 (k0γR). (16)

When the contourL is a circle with radiusa and~rs′ is a point on that contour, the equations (15)
and (16) take the following forms:

∂H(1)
0

(

2ak0γ
∣

∣

∣sin s−s′
2

∣

∣

∣

)

∂n
= −k0γ

∣

∣

∣

∣

sin
s−s′

2

∣

∣

∣

∣

H(1)
1

(

2ak0γ
∣

∣

∣

∣

sin
s−s′

2

∣

∣

∣

∣

)

, (17)

and
∂H(1)

0

(

2ak0γ
∣

∣

∣sin s−s′
2

∣

∣

∣

)

∂τ
= −k0γ

sin(s−s′)

2
∣

∣

∣
sin s−s′

2

∣

∣

∣

H(1)
1

(

2ak0γ
∣

∣

∣

∣

sin
s−s′

2

∣

∣

∣

∣

)

. (18)
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Fig. 7. Schematic of a coated inclusion.

We also note the following limits:

lim
s′→s

[

H(1)
0 (k0γR)−H(1)

0

(

2ak0γ
∣

∣

∣

∣

sin
s−s′

2

∣

∣

∣

∣

)]

=
2i
π

ln
J(s)

a

lim
s′→s





∂H(1)
0 (k0γR)

∂n
−

a
J(s)

∂H(1)
0

(

2ak0γ
∣

∣

∣sin s−s′
2

∣

∣

∣

)

∂n



=
1−κ(s)J(s)

iπJ(s)

lim
s′→s





∂H(1)
0 (k0γR)

∂τ
−

a
J(s)

∂H(1)
0

(

2ak0γ
∣

∣

∣
sin s−s′

2

∣

∣

∣

)

∂τ



= 0

, (19)

with κ(s) being the curvature ofL ats.

Appendix B: Coated inclusions

Consider thejth inclusion which is coated with a material of the refractive indexnm as shown
schematically in Fig. 7. In this case an additional inner contour is present, and four additional
contours functions must be specified:e(~rs) andh(~rs) at both contours on the coating side. When
the boundary conditions are considered at the outer contourof this inclusion, Eqs. (5) should
be modified. The first one, corresponding to the continuity ofEz, becomes:

∫

L( j)
o

e( j)
o (s′)Gm(s,s′)J(s′)ds′ +

∫

L( j)
i

e( j)
i (s′)Gm(s,s′)J(s′)ds′ =

Nc

∑
k=1

∫

L(k)
o

e(k)
g (s′)Gg(s,s

′)J(s′)ds′,

(20)
whereL( j)

o denotes the outer contour,L( j)
i denotes the inner one,e( j)

o denotes the potential

density at the outer contour ande( j)
i denotes the potential density at the inner one (both densities

are defined on the coating side). Suppose that the contours are circular. Since~rs is on the outer
boundary, the first integral in (20) is discretized by using the analytical formulas in (8) while
the second integral is discretized by performing a FFT.

When the same boundary condition is considered at the inner contour we obtain:
∫

L( j)
i

e( j)
c (s′)Gc(s,s

′)J(s′)ds′ =
∫

L( j)
i

e( j)
i (s′)Gm(s,s′)J(s′)ds′ +

∫

L( j)
o

e( j)
o (s′)Gm(s,s′)J(s′)ds′. (21)

Again, for circular contours, the integrals along the innercontour are evaluated with the help of
analytical formulas in (8) while the one along the outer contour is discretized by performing a
FFT. The rest of the equations in (5), are modified in a similarway.
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