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Abstract: In the hollow core photonic bandgap fibers, modal losses are
strongly differentiated, potentially enabling effectively single mode guid-
ance. However, in the presence of macro-bending, due to mode coupling,
power in the low-loss mode launched into a bend is partially transferred
into the modes with higher losses, thus resulting in increased propagation
loss, and degradation of the beam quality. We show that coupled mode
theory formulated in the curvilinear coordinates associated with a bend can
describe correctly both the bending induced loss and beam degradation.
Suggested approach works both in absorption dominated regime in which
fiber modes are square integrable over the fiber crossection, as well as in
radiation dominated regime in which leaky modes are not square integrable.
It is important to stress that for multimode fibers, full-vectorial coupled
mode theory developed in this work is not a simple approximation, but it is
on par with such ”exact” numerical approaches as finite element and finite
difference methods for prediction of macro-bending induced losses.

© 2008 Optical Society of America

OCIS codes: (060.2400) Fiber properties; (060.5295) Photonic crystal fibers; (000.4430) Nu-
merical approximation and analysis

References and links
1. P. Russell, ”Photonic crystal fibers,” Science 299, 358 (2003).
2. C.M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W.

Koch, ”Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657 ( 2003).
3. B. Temelkuran, S. D. Hart, G. Benoit, and J. D. Joannopoulos, Y. Fink, ”Wavelength-scalable hollow optical

fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
4. S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D.

Joannopoulos, and Y. Fink, ”Low-loss asymptotically single-mode propagation in large core OmniGuide fibers,”
Opt. Express 9, 748 (2001).

5. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten
”Multipole method for microstructured optical fibers. I. Formulation,” JOSA B 19, 2322 (2002).

6. E. Pone, A. Hassani, S. Lacroix, A. Kabashin, and M. Skorobogatiy, ”Boundary integral method for the chal-
lenging problems in bandgap guiding, plasmonics and sensing,” Opt. Express 15, 10231 (2007).

7. K. Saitoh and M. Koshiba, ”Full-vectorial imaginary-distance beam propagation method based on a finite element
scheme: application to Photonic Crystal fibers,” IEEE J. Quantum Electron. 38, 297 (2002).

8. D.M. Shyroki, J. Lgsgaard and O. Bang, ”Finite-difference modeling of Bragg Fibers with ultrathin cladding
layers via adaptive coordinate transformation,” Proc. of SPIE 6728, 672830 (2007).

(C) 2008 OSA 15 September 2008 / Vol. 16,  No. 19 / OPTICS EXPRESS  14945
#95218 - $15.00 USD Received 22 Apr 2008; revised 31 Jul 2008; accepted 14 Aug 2008; published 8 Sep 2008



9. M. Skorobogatiy, S. A. Jacobs, S .G. Johnson, and Y. Fink, ”Geometric variations in high index-contrast
waveguides, coupled mode theory in curvilinear coordinates,” Opt. Express 10, 1227 (2002).

10. M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and
Y. Fink, ”Analysis of general geometric scaling perturbations in a transmitting waveguide,” JOSA B 19, 2867
(2002).

1. Introduction

Hollow photonic band gap (HPBG) fibers Refs. [1, 2, 3] guide light within hollow cores via
reflection of the guided light from the walls of a surrounding dielectric multilayer mirror. Such
fibers promise low transmission loss at almost any wavelength as confinement of the electro-
magnetic energy in the hollow core reduces considerably the effect of fiber material losses.
Potential applications of such fibers include high power guiding in mid-IR, ultra-low nonlin-
earity fibers for telecommunications, high sensitivity detectors where sensing layers and analyte
are placed inside of a hollow fiber core.

Leaky modes of the HPBG fibers can be calculated using transfer matrix theory in the case
of Bragg fibers Ref. [4], multipole method Ref. [5] in the case of microstructured fibers with
circular features, boundary integral method Ref. [6] in the case of fibers with irregular shaped
features, or generally, with the finite difference or finite element Ref. [7] methods implementing
perfectly matched layer boundary conditions. Using any of these approaches, the final result
is an eigen mode having only an outgoing flux at infinity and characterized by a complex
propagation constant β = βRe + iβIm. Due to F(x,y)exp(iβ z) dependence of the modal fields
(F stands for the electric or magnetic field vector), imaginary part of the propagation constant
defines modal propagation loss, which is typically expressed in the units of dB/m as α[dB/m] =
20βIm/ln(10).
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Fig. 1. (a) Schematic of a hollow core Bragg fiber. Sz is the transverse distribution of the
longitudinal energy flux component for the Gaussian-like HE11 core guided mode. (b)
Spectrum of the modal propagation constants for the hollow core Bragg fiber shown in
(a), evaluated at λ = 10.6μm.

As an example, most of the calculations that follow are done for a 25 layer hollow core
Bragg fiber (see Fig. 1(a)) of the core radius Rc = 100μm, layer refractive indices nh =
2.80+ i1.94 ·10−6, nl = 1.60+ i1.94 ·10−3, and layer thicknesses dh = 0.926μm, dl = 1.939μm,
operating at the emission wavelength of a CO2 laser λ = 10.6μm. Optical parameters of the
high refractive index layer are those of a chalcogenide glass with absorption loss of 10dB/m,
while parameters of a low refractive index layer are those of a generic polymer with absorp-
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tion loss of 104dB/m. Such fibers are already used for guiding CO2 laser radiation Ref. [3].
HE11 mode of thus defined Bragg fiber is guided by the periodic reflector bandgap centered at
λ = 10.6μm. For circular symmetric fibers the eigen fields are most conveniently expressed in
a cylindrical coordinate system as F(ρ)exp(imθ + iβ z), where m is a modal angular momen-
tum. Losses of the modes of a HPBG fiber are strongly differentiated. In Fig. 1(b) we present
modal losses calculated by the standard transfer matrix theory as a function of the mode effec-
tive refractive index. As seen from Fig. 1(b), low angular momentum modes (m = 0,1) with
effective refractive indices close to that of air have the tendency to exhibit the lowest losses.
Moreover, in Fig. 1(b) one can also distinguish the low-loss (TE-like) and high-loss (TM-like)
branches of modes. Among all the modes, the HE11 mode with m = 1 is the easiest one to
excite with a Gaussian laser source. It is important to note that thus defined fiber works in the
absorption dominated regime, meaning that radiation losses of the modes are much smaller than
their absorption losses. For example, absorption loss of the HE 11 mode is αabs = 3.43dB/m,
while the mode radiation loss is αrad = 0.45dB/m. We note that to differentiate between the
modal radiation and absorption losses one has to perform two simulations with and without
material absorption losses. Then, simulation without material absorption loss is going to give
modal radiation loss, while simulation with material absorption loss is going to give a net of the
radiation and absorption losses. For the reference, an effective way of decreasing fiber absorp-
tion and radiation losses is by increasing the size of a hollow core Ref. [4]. Moreover, radiation
confinement loss can be decreased independently of absorption loss by increasing the number
of periods in a Bragg reflector. By choosing appropriately the hollow core size and the number
of reflector bi-layers one can implement either radiation or absorption dominated regimes of
mode propagation.

2. Coupled Mode Theory for the leaky modes of a bent fiber

We now consider modal propagation in a HPBG fiber in the presence of a macro-bend of radius
Rb. Schematic of a bend is shown in Fig. 2(a). It is well known that bent fibers support leaky
eigen modes. Such modes have complex valued propagation constants even in the absence of
material losses due to bending-induced radiation loss. Moreover, such modes are not square
integrable as they have non-zero outgoing flux at infinity. When calculating eigen modes of a
bend the choice of numerical methods is limited. One typically uses either finite difference Ref.
[8] or finite element methods Ref. [7] formulated in the curvilinear coordinates associated with
a bend.

Interestingly, field distribution in the leaky modes of a bent multimode fiber can be well
approximated by employing full-vectorial coupled mode theory (CMT) Ref. [9]. This approx-
imation works best inside, or in the near vicinity of a fiber core. CMT allows, for example,
finding beam intensity distribution at the bend output. Advantage of the coupled mode theory
is its simplicity as only eigen modes of a straight fiber have to be computed, for which many
efficient numerical solvers exist. Moreover, as we will see in the following, coupling elements
within CMT framework have to be computed only for a single value of a bending radius, while
for any other value of a bending radius they have to be simply re-scaled. This allows efficient
computation of the eigen spectra and total bending losses for multiple values of a bending ra-
dius. Finally, eigen value problem resulting from CMT involves full matrices of small order
(typically less than 1000x1000).

It is well established, however, that using coupled mode theory with expansion basis of the
truly guided (βIm = 0) eigen modes of a reference fiber, it is not possible to predict bending
losses. This is due to the fact that a purely real spectrum of the modal propagation constants of
the modes of a reference fiber, results in a purely real spectrum of the eigen modes of a bent
fiber when CMT is used. CMT, however, can correctly estimate bending losses when modes
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of a reference fiber are characterized by the complex propagation constants. This can happen
either in the case of a fiber featuring absorbing materials, or in the case of a radiating fiber, such
as hollow core fiber guiding by photonic bandgap effect. It is important to note that bending
losses evaluated by CMT will somewhat underestimate the true bending losses as CMT only
considers the effect of loss increase via mixing with higher-loss modes, and not due to bend
induced radiation. Another important point is that for CMT to converge the expansion bases
has to include enough modes; thus, the fiber in question has to be overall multimode. This,
however, does not signify that bending losses of a single mode fiber can not be computed. One
simply has to include the cladding or jacket modes into the consideration.

To formulate CMT in the case of a bend we follow closely the method of perturbation match-
ing detailed in Ref. [9]. Within this method Maxwell equations are transformed into a curvilin-
ear coordinate system where dielectric function becomes that of a straight reference fiber. One
then uses the modes of a reference fiber as an expansion basis to solve for the scattering prob-
lem. Due to curvilinear transformation, Maxwell equations acquire additional terms responsible
for coupling between the modes of a straight waveguide. In the particular case of a bend shown
in Fig. 2(a) we use the following coordinate transformation:

x = Rb − (Rb − x′)cos(s/R)
z = (Rb − x′)sin(s/R) , (1)

where (x′,y′,s) is a curvilinear coordinate system associated with a bend, and y = y ′. In this
coordinate system dielectric profile becomes that of a straight reference fiber with a crossection
identical to that of a bent fiber. When bending radius is much larger than the core size of a fiber,
transverse modal fields of a bend can be expended into the transverse fields of a reference fiber:

Fβb
t (x′,y′,s) = exp(iβbs)∑

βr

Cβb
βr

Fβr
t (x′,y′), (2)

where βb and βr are the propagation constants of the modes of a bend and a reference straight
fiber, respectively.

We now define the elements of a normalization matrix B for the modes of a reference fiber
are defined as:

Bβ ′
r ,βr = ŝ ·

∫
dx′dy′(Eβ ′

r
t ×Hβr

t +Eβr
t ×Hβ ′

r
t ), (3)

where t signifies transverse field components, and s signifies longitudinal field components. For
the true guided modes, integration in Eq. (3) is over the whole 2D space. Moreover, for the two
orthogonally polarized modes in the plane and perpendicular to the plane of a band, matrix B is
diagonal even in the presence of material losses. In the case of radiating fibers (such as hollow
core Bragg fibers) characterized by non-square-integrable leaky modes, integration in Eq. (3) is
performed only in the finite region terminated by the interface between the last reflector layer
and a cladding (a so called cut-off approximation). Finally, for the orthogonally polarized leaky
modes, matrix B is dominantly diagonal, and, in practice, can be considered as strictly diagonal.
These two approximations for the integrals involving leaky modes become exact in the limit of
infinite number of bi-layers in which case the core mode becomes truly guided.

Elements of the coupling matrix ΔM for the modes of a reference fiber are defined as:

ΔMβ ′
r ,βr = − ω

Rb

∫
dx′dy′[(Hβ ′

r
s Hβr

s +Hβ ′
r

t ·Hβr
t )+ ε(x′,y′)(Eβ ′

r
s Eβr

s +Eβ ′
r

t ·Eβr
t )] · x′ . (4)

With these definitions, eigen modes of a bent fiber can be found by resolving the following
eigen value problem Ref. [9]:

βbBCβb = (BBr + ΔM)Cβb , (5)
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where Br is a diagonal matrix of the eigenvalues of a straight reference fiber B r
βr,βr

= βr, while

Cβb is a vector of unknown expansion coefficients in Eq. (2).
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Fig. 2. (a) Schematic of a fiber bend. (b) Losses of the eigen modes of a bent hollow
core Bragg fiber evaluated at λ = 10.6μm as a function of the bending radius. Material
absorbtion dominated regime. (c) Losses of an HE11-like mode of a bend as a function of
the wavelength of operation for various values of the bending radius.

As an example, consider a macro-bend in a hollow core Bragg fiber presented in Fig. 2(a). In
our simulations we used all the fiber core modes with angular momenta m = 0−10 - in total 362
modes. All the calculations are performed at λ = 10.6μm. Two orthogonally polarized eigen
modes of a reference Bragg fiber are found using transfer matrix technique Ref. [4] by con-
structing symmetric or anti-symmetric combinations of the degenerate cylindrical eigen modes
in the form [Fm(ρ)exp(imθ )±F−m(ρ)exp(−imθ )]exp(iβ z). In what follows such defined po-
larizations are said to be polarized either in the plane of a bend (XZ plane), or perpendicularly
to the plane of a bend. In Fig. 2(b) in dashed lines we present losses of the perpendicularly
polarized eigen modes of a bent fiber as a function of the bending radius. In fact, the figure
presents losses relative to the loss of an HE11 mode of a straight fiber. When bending radius
increases, losses of one of the modes of a bend approaches that of a HE 11 mode of a reference
fiber, which allows us to identify such a mode as HE11-like. However, as bending radius de-
creases below 3cm such identification becomes challenging as the HE 11-like mode experiences
a large number of anticrossings with other modes, thus becoming strongly hybridized. For com-
parison, in solid curve we present losses of a HE11-like eigen mode of a bend computed with
finite element method Ref. [7] and observe an excellent match. To understand better the nature
of rapid increase in the modal loss when bending radius is reduced, in Fig. 2(c) we present
losses of an HE11-like mode of a bend as a function of the wavelength of operation for various
values of the bending radius. From this plot we note that as long as HE 11-like mode of a bend
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can be clearly identified (bending radii larger than 3cm), such a mode is bandgap guided with
the center of a bandgap practically unchanged. Therefore, loss increase of an HE 11-like mode
of a bend can be rationalized as being primarily due to mode mixing of the HE 11 mode of a
straight fiber with much lossier higher order modes, and not due to band induced shift in the
bandgap position. A word of caution is that the Bragg fiber considered in this work exhibits a
very high refractive index contrast, and is highly multimode. Therefore, we do not expect that
the last conclusion holds for a general photonic bandgap fiber.

3. Total bending loss and beam degradation in a bent fiber

In practical applications, a more convenient measure of bending loss is given by the ratio of the
total power at the bend output to the total power at the bend input. As HE 11 mode of a straight
Bragg fiber is the one most compatible with the Gaussian-like mode of a laser source, we
assume that all the power at the bend input is in the HE11 mode. Traditionally, to calculate total
bending loss under a given excitation condition, one would use a beam propagation method,
which is, generally, more computationally intensive than a CMT. Using CMT to solve for the
bending loss involves calculation of the total power at the bend output. Assuming that the vector
Inr defines excitation coefficients of the modes of a reference fiber at the bend input, then the
vector of expansion coefficients (for the modes of a straight fiber) at the bend output is:

Outr = Cbexp(iBbRbθb)C−1
b Inr, (6)

where Cb is a matrix of the bend eigenvectors of Eq. (5), while B b is a diagonal matrix of
the corresponding eigenvalues of the bend eigen modes B b

βb,βb
= βb. Despite its apparent com-

plexity, Eq. (6) is straightforward to rationalize. Particularly, C−1
b Inr defines modal expansion

coefficients in terms of the modes of a bend that matches the excitation profile In r defined in
terms of the modes of an input straight waveguide. Then, exp(iB bRbθb) propagates thus ex-
cited modes of a bend to the bend output end. Finally multiplication by C b at the end of a bend,
converts the expansion in terms of the eigen modes of a bend into the expansion in terms of the
eigen modes of an output straight waveguide. Note that expression Eq. (5) assumes that there is
no back reflection at the bend input and output ends due to the modal field mismatch. Although
this assumption is true for the moderate and large bending radii (R b > 1cm in our case), for
very tight bends this approximation might not be valid, and the region of applicability of Eq.
(5), generally, deserves further study.

Transverse modal fields at the bend output can then be calculated as:

Fout
t (x′,y′) = ∑

βr

Outr
βr

Fβr
t (x′,y′). (7)

Finally, energy flux along the direction of a bend is S s = ŝ ·Re(Et ×H∗
t )/2. Substituting Eq. (7)

into the definition of the energy flux we finally get for the output power:

Pout = ŝ · ∫ dx′dy′ Sout
s (x′,y′) = ∑β ′

r ,βr Outr
β ′

r
Outr∗

βr
ŝ · ∫ dx′dy′ Re(Eβ ′

r
t (x′,y′)×Hβr∗

t (x′,y′))/2.

(8)
By substituting the output coefficients by the input coefficients In → Out, expression Eq. (8)
gives an input power Pin. Bend loss per unit of length is then defined as:

αbend [dB/m] = −10log10(Pout/Pin)/(θbRb). (9)

In Fig. 3(a) in solid curves we plot bend induced losses (αbend −αHE11) as a function of the
bending radius, assuming that only a HE11 mode is launched at the bend input. As before, all
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Fig. 3. (a) Bending losses of a hollow core Bragg fiber under HE11 launching condition
for various values of bending radius (absorption dominated regime). (b) Plots of intensity
distribution at the bend output, under HE11 launching conditions for various values of
bending radius. (c) Bending losses of a hollow core Bragg fiber under HE11 launching
condition for various values of bending radius (radiation dominated regime).

the simulations are implemented for λ = 10.6μm. For comparison, in circles we present the
same loss as calculated by the finite element beam propagation method Ref. [7], and observe an
excellent match. Note that polarization in the plane of a bend is significantly lossier than polar-
ization perpendicular to the plane of a bend. In Fig. 3(b) we present beam intensity distributions
for the lossiest polarization at the bend output for three values of the bending radii. Note that
mode mixing and beam quality degradation becomes substantial for bending radii smaller than
10cm.

So far, we have considered Bragg fiber operating in the absorption dominated regime, and
having square integrable modes. As was mentioned before, the CMT formalism developed in
this paper is general, and it also works in the case of a fiber operating in the radiation dominated
regime. To demonstrate this, in Fig. 3(c) we present bend induced losses for a Bragg fiber with
the same structural parameters as before, however having only 19 layers in the reflector, and
made of loss-less materials. Eigen modes of such a fiber are non square integrable leaky modes.
In this case, normalization Eq. (3) and coupling elements Eq. (4) must be computed using the
cut-off approximation by integration over a finite region of the fiber crossection confined by the
boundary with the cladding. CMT results for the total bending loss presented as solid curves
in Fig. 3(c) are compared with the predictions by the finite element beam propagation method
Ref. [7], and a good match is observed.
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Finally, from Figs. 2,3 we note that bending loss scales as ∼ R−2
b for large bending radii when

mode mixing is small, while bending loss scales as ∼ R−1
b for tight bending radii when mode

mixing is significant. Scaling for large bending radii can be explained using perturbation theory
(PT) Ref. [10]. In this regime, from Eq. (4) it follows that ΔM ∼ R−1

b . Moreover, bending loss
is mostly determined by the loss of a HE11-like mode of a bend, whose complex propagation
constant is given by the second order PT expression:

βb −βr = ∑
β ′

r �=βr

ΔM2
β ′

r ,βr

Bβ ′
r ,β ′

r
Bβr,βr

1
βr −β ′

r
∼ R−2

b . (10)

4. Discussion

Presented Coupled Mode Theory Eq. (5) for the evaluation of a fiber macro-bending loss is
most appropriate when dealing with multimode fibers guiding by the total internal reflection
mechanism. Another important condition is that modal transmission losses in such a fiber have
to be strongly differentiated. In this case calculation of the coupling elements Eq. (4) is well
defined as modal fields of a straight fiber are square-integrable. CMT approach is supposed to
somewhat underestimate the true bending loss as the loss mechanism captured by the CMT is
through modal mixing with other lossy modes, while it does not describe radiation loss induced
by the bend.

Interestingly, Coupled Mode Theory Eq. (5) can be also applied to the case of radiating
photonic bandgap fibers with a finite reflector, in which modal losses are naturally strongly
differentiated. In this case, however, the CMT as presented by Eq. (5) is, strictly speaking,
not well defined. The reason for that is that leaky modes, which are the eigen solutions of a
radiating system, are not square-integrable and, therefore, coupling elements Eq. (4) are not
defined. However, by using a simple cut-off approximation so that the coupling elements are
computed by integrating over a finite domain limited by the outer boundary of a fiber, we
find that macro-bending induced loss in radiating fibers can be computed accurately. Although
detailed understanding of why CMT with a cut-off approximation gives correct bending loss
in application to radiating systems requires further studies, we can rationalize this using the
following argument. Particularly, within the CMT approach, eigen mode of a bend is presented
as a linear combination of the modes of a straight fiber. As individual modes of a radiating
fiber are lossy, it is logical to expect that the overall loss of an eigen mode of a bend will
be the average of losses of the individual modes of a straight fiber weighted by the power
carried in each mode. In turn, power carried by the individual modes is defined by the expansion
coefficients which are the eigen vectors of the CMT equation. In the limit of infinite number
of layers in the reflector, within reflector bandgap a photonic bandgap fiber becomes strictly
guiding. Modes in such a fiber are square-integrable, and they exhibit exponentially fast decay
towards the fiber periphery due to bandgap confinement. Therefore, coupling elements in Eq.
(4) become well defined, thus allowing to compute the vector of modal expansion coefficients.
It is logical to assume that such coefficients for the case of a fiber with a large number of
layers in a finite reflector should be similar to the coefficients in the case of a fiber with an
infinite reflector. Therefore, in the case of radiating fibers, coupling elements in Eq. (4) can be
computed either by using a cut-off approximation, or taken as those for a photonic bandgap
fiber with an infinite reflector.

Finally, we note that FEM approach with PML boundaries is supposed to approximate both
the bend induced radiation loss and a loss component due to mode mixing. Therefore, one
would expect that losses given by the FEM method should be larger than those given by the
CMT method. In fact, in our simulations we did not establish this trend consistently. Although
the exact nature of this disagreement is not clear to us, we suspect that it is related to the
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convergency of a CMT method, as well as to a certain ambiguity in the choice of a position of
the PML boundary.

5. Conclusion

We demonstrated that full-vectorial coupled mode theory formulated in the curvilinear coordi-
nate system associated with a bend can predict correctly bending induced radiation and absorp-
tion losses in photonic bandgap fibers. Results of the CMT for a bent hollow core Bragg fiber
were compared with predictions of the finite element code and excellent agreement was found.
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